Abstract:
An inclined layered solid-filling mining method in an ultrathick coal layer is applicable to exploitation in a “three-unders” ultrathick coal layer. In this method, the number of inclined layers is determined based on a principle of layered thickness from 2.5 m to 4.5 m, and a layered-exploitation downward-filling exploitation order is adopted. Tunnels and equipment are arranged according to a conventional solid-filling mining method. A cyclic order of mining, layout of metal meshes (14) and bamboo fences (24), and filling is adopted, so as to accomplish filling and exploitation of a first mining face and a first layer (21). Meanwhile, 4 months after the working face of this layer is finished, at a corresponding position in a second layer (22), under the cover of an artificial ceiling formed by the first layer (21), exploitation is performed by using the same filling mining method; such a cycle is repeated, and exploitation in a current layer is performed under the cover of an artificial ceiling fabricated by an upper layer, until the entire ultrathick coal layer is finished. When this method is adopted to exploit “three-unders” ultrathick coal layer resources, strata movement and earth surface subsidence may be effectively controlled; the method has a high extraction rate, high production efficiency, and low cost.
Abstract:
Provided is a base mechanism of a single prop capable of being unloaded at reduced pressure, including a base bottom plate and two wedge-shaped support blocks, where one of the wedge-shaped support blocks serves as a fixed wedge-shaped support block and is welded onto the base bottom plate, and the other of the wedge-shaped support blocks serves as a movable wedge-shaped support block and is connected to the fixed wedge-shaped support block by using a screw rod and a nut. The present invention can effectively unload the single prop at reduced pressure or remove the single prop in a contracted manner, is of a simple structure, is convenient to operate, has a good use effect, overcomes the technical problem that it is difficult to unload a single prop at reduced pressure in this technical feature, and is widely applicable in this technical field.
Abstract:
An apparatus for pre-loading a mechanical constant-resistance single prop includes a rhombic stretchable bracket, a screw rod, a first cylindrical sleeve ring, and a second cylindrical sleeve ring. The screw rod is connected to two opposite apex corners of the rhombic stretchable bracket. A tail end of the screw rod is fixedly connected to one apex corner of the rhombic stretchable bracket. An end head of the screw rod passes through another apex corner of the rhombic stretchable bracket. The remaining two opposite apex corners of the rhombic stretchable bracket are respectively fixedly connected to edges of the first cylindrical sleeve ring and the second cylindrical sleeve ring through connecting rods. The screw rod is threadedly connected to the apex corner of the rhombic stretchable bracket through which the screw rod passes. A method for pre-loading a mechanical constant-resistance single prop is also provided.
Abstract:
Disclosed is a device for detecting wall abrasion of a solid-filling feeding well and a detection method thereof. The device comprises a well wall abrasion detector, a horizontal displacement meter, a vertical displacement monitor, and a limit guide rod. One end of the limit guide rod is connected to the well wall abrasion detector. The signal output terminal of the well wall abrasion detector is connected to the signal input terminal of the horizontal displacement meter, and the other end of the limit guide rod passes through the vertical displacement monitor for slidable setting. This disclosure mainly utilizes a resistance strain displacement sensor to detect the abrasion and deformation degree of the well wall, determines the position of damages with the vertical displacement monitor, and draws wall abrasion curves by using the obtained data. The device provided is easy to use, has low cost, has high reliability, and can effectively detect the wall abrasion condition of a solid-filling feeding well, thereby providing a basis for ensuring the working efficiency of the feeding well.
Abstract:
A method for determining a physical similarity simulation material of a solid backfill body is provided. A compaction test is run on a gangue backfill body in a lab, to obtain a ε-σ curve regarding the gangue backfill body in the compaction process. Backfill blocks are made by using a thin wood board, sponge, and a paper sheet in different proportions, and then an unconfined compression test is separately run on the backfill blocks used for physical similarity simulation, to obtain εi-σi curves regarding the backfill blocks in the compression process. A sum of squared errors Σ(εi−ε0)2 is introduced to separately calculate a sum of squared errors of the backfill block and that of the gangue backfill body, and accordingly an error between ε-σ curves regarding the test block and the gangue backfill body is determined. Finally, a backfill block for which the sum of squared errors is less than 0.5 is determined as a physical similarity simulation material of the gangue backfill body. By fabrication and selection of similar materials, the present invention can reduce an error caused by a selected backfilling material during a physical similarity simulation experiment, guaranteeing the accuracy of the physical similarity simulation experiment for solid backfill mining.
Abstract:
Disclosed is a method for designing supporting parameters of a transition support for a mixed mining face of filling and fully-mechanized mining. The method includes: first, determining a total length of a mixed mining working face and a length of a filling section according to requirements of a coal mining production capacity of the mixed mining working face and a filling capacity of the filling section working face; then, establishing a mixed mining numerical model of filling and fully-mechanized mining by using three-dimensional distinct element software, and simulating and calculating a caving height of a roof of a transition section and a stress influence range of the transition section when a filling rate of a mined-out area of the filling section changes; based on a result of numerical simulation and calculation, performing curve fitting according to a correlation coefficient to obtain a functional relationship between the filling rate and the caving height and a functional relationship between the filling rate and the stress influence range of the transition section; and finally designing supporting parameters of a transition support in combination with actual engineering geological parameters. The method can provide a reference for supporting design of a support, and enables a smooth transition between a filling support and a fully-mechanized mining support for a mixed working face, thereby further enriching filling mining theories and expanding the application range of filling mining.
Abstract:
Disclosed is a device for detecting wall abrasion of a solid-filling feeding well and a detection method thereof. The device comprises a well wall abrasion detector, a horizontal displacement meter, a vertical displacement monitor, and a limit guide rod. One end of the limit guide rod is connected to the well wall abrasion detector. The signal output terminal of the well wall abrasion detector is connected to the signal input terminal of the horizontal displacement meter, and the other end of the limit guide rod passes through the vertical displacement monitor for slidable setting. This disclosure mainly utilizes a resistance strain displacement sensor to detect the abrasion and deformation degree of the well wall, determines the position of damages with the vertical displacement monitor, and draws wall abrasion curves by using the obtained data. The device provided is easy to use, has low cost, has high reliability, and can effectively detect the wall abrasion condition of a solid-filling feeding well, thereby providing a basis for ensuring the working efficiency of the feeding well.
Abstract:
In an inclined layered solid-filling mining method in an ultrathick coal layer, tunnels and equipment are arranged according to a solid-filling mining method. An artificial roof for a lower layer is formed by metal meshes and bamboo fences of a first layer a solid-filling mining method. The method is repeated, until the entire ultrathick coal layer is finished. The method is repeated forming additional roofs for subsequent layers.
Abstract:
A method and a system for simulating contact and interaction between a support member and a chamber surrounding rock mass are provided in the application. The method includes: obtaining a support scheme of a roadway to be simulated, dividing the roadway to be simulated based on the support scheme to obtain several roadway sections; obtaining physical and mechanical parameters of each rock stratum in each roadway section and an occurrence state of the roadway surrounding rock; constructing particle flow numerical models corresponding to the roadway section; through the particle flow numerical models of every two adjacent roadway sections, obtaining a particle flow meso-structural evolution model of the roadway to be simulated; obtaining meso-mechanical parameters of the roadway to be simulated based on the particle flow numerical models, calibrating the meso-mechanical parameters through the physical and mechanical parameters, establishing the particle flow meso-structural evolution model of the roadway to be simulated.
Abstract:
A mechanical rocker-arm type vertical feeding cushioning device, consisting of two identical cushioning units and a box body (7). The two cushioning units are respectively arranged with a certain height difference on the inner side of the box body (7). Each cushioning unit consists of a cushioning mechanism and a fixing hinge mechanism. The cushioning mechanism is composed of a cushioning plate (1), a spring (5) and a balance weight (6). The fixing hinge mechanism is composed of a hinge plate (2), a right angle circular rod (3) and an elastic limiting device (4). The cushioning plate (1) is fixed to the hinge plate (2) via connection holes and using bolts. The hinge plate (2) is welded to the right angle circular rod (3). The elastic limiting device (4) consists of two elastic limiting plates and a hollow iron ring in a welded manner. The right angle circular rod (3) is connected to the elastic limiting device (4) in a sleeved manner via the hollow iron ring of the elastic limiting device (4). An upper end of the spring (5) is connected to the right angle circular rod (3), and the balance weight (6) is suspended at a lower end of the spring (5). Material is fed to the cushioning plates via a feeding pipe, and falls down after being cushioned twice by the cushioning plates (1). The cushioning device repeatedly cushions and recovers under the joint effect of the cushioning plates (1) and the cushioning balances (6).