摘要:
A method of traffic regulation in a packet communication network involves a token bucket associated with a subscriber. Packets arriving at the regulator are handled in accordance with the token bucket configuration. The method involves measuring a demand placed on the network by the subscriber. The token bucket configuration is dynamically adjusted based on the demand. Another method of traffic regulation handles packets arriving at the regulator in accordance with first and second token bucket configurations. The first token bucket regulates packet rate while the second token bucket regulates data rate. Another method of traffic regulation involves handling packets in accordance with a token bucket configuration, where the amount of tokens to be removed is based on the amount of the flow and is further based on a classification of the flow. Packet-level devices for traffic regulation are also contemplated.
摘要:
A method of traffic regulation in a packet communication network involves a token bucket associated with a subscriber. Packets arriving at the regulator are handled in accordance with the token bucket configuration. The method involves measuring a demand placed on the network by the subscriber. The token bucket configuration is dynamically adjusted based on the demand. Another method of traffic regulation handles packets arriving at the regulator in accordance with first and second token bucket configurations. The first token bucket regulates packet rate while the second token bucket regulates data rate. Another method of traffic regulation involves handling packets in accordance with a token bucket configuration, where the amount of tokens to be removed is based on the amount of the flow and is further based on a classification of the flow. Packet-level devices for traffic regulation are also contemplated.
摘要:
A method of traffic regulation in a packet communication network involves a token bucket associated with a subscriber. Packets arriving at the regulator are handled in accordance with the token bucket configuration. The method further involves measuring a demand placed on the packet communication network by the subscriber. The token bucket configuration for the subscriber is dynamically adjusted based on the demand. Another method of traffic regulation handles packets that arrive at the regulator in accordance with first and second token bucket configurations. The first token bucket regulates packet rate while the second token bucket regulates data rate. Another method of traffic regulation involves handling packets in accordance with a token bucket configuration, where the amount of tokens to be removed is based on the amount of the flow and is further based on a classification of the flow. Packet-level devices for traffic regulation are also contemplated.
摘要:
A method of traffic regulation in a packet communication network involves a token bucket associated with a subscriber. Packets arriving at the regulator are handled in accordance with the token bucket configuration. The method involves measuring a demand placed on the network by the subscriber. The token bucket configuration is dynamically adjusted based on the demand. Another method of traffic regulation handles packets arriving at the regulator in accordance with first and second token bucket configurations. The first token bucket regulates packet rate while the second token bucket regulates data rate. Another method of traffic regulation involves handling packets in accordance with a token bucket configuration, where the amount of tokens to be removed is based on the amount of the flow and is further based on a classification of the flow. Packet-level devices for traffic regulation are also contemplated.
摘要:
A switching apparatus (and method and program storage device for storing the method) for receiving and transmitting data units each segmented into a series of cells of data, including a first cell and a last cell, each cell of a series including a label common to all cells of said series, includes at least one incoming port for receiving cells of a plurality of series at each incoming port, at least one outgoing port for transmitting cells out of the apparatus with an outbound label, a storage device for storing a series of cells received at each incoming port until the last cell of the series is received, and, a device for transmitting each of the series of cells sequentially from the first cell to the last cell from the storage device to a selected outgoing port. Each cell of each series has an outbound label common to all cells of the series, and all cells of each of the series are transmitted before transmitting any cells of other series having the same outbound label.
摘要:
This invention discloses a way to map IP or similar routing information onto a technology that uses label switching and swapping, such as ATM, without the need to change the network paradigm. This allows a network to continue to function and appear as a standard IP network, but with much higher performance. One of the requirements of IP networks is to decrement the IP packet Time-To-Live (TTL) field on each hop it traverses. Currently, switched packets within an ATM like network cannot decrement the TTL. This invention can decrement packet TTLs appropriately by maintaining a hop-count per each switched path. This hop-count maintains the total number of hops a packets would have traversed, had it been forwarded in the IP hop-by-hop model, rather than through the ATM like switched path. Before forwarding a packet on a switched path, an ingress ISR decrements the TTL by the hop-count. In this way, at the switched path exit point, the TTL is the same as if it had been forwarded by IP. If the decrement value is greater than or equal to the TTL of the packet, the packet may be forwarded hop-by-hop; in this situation, the packet will be discarded at the correct IP node, rather than being switched through the ATM like network. This hop-count is calculated by virtue of the fact that each switched path is initiated by the egress node, and the establish (or set-up) message traverses the network hop-by-hop until each ingress node is reached. The switched path establishment message includes a hop-count field, which is incremented at each node that processes the establishment message. Thus, at the ingress node, the received hop-count is equal to the total number of hops to the egress point.
摘要:
Automated booting of a client for a subscriber is provided for clients that are for use in interactive user sessions that involve multimedia. A subscribe message is sent from the client to a proxy server. The proxy server authenticates the subscribe message, and sends the subscribe message to the configuration server. A notify message is sent to the client from the configuration server. The notify message is sent through the proxy server, and contains a location of a profile for the client. The profile is downloaded to the client. This arrangement allows the persistence of profiles in a centralized place.
摘要:
The disclosed embodiments include a system and method for providing at least one electronic application to at least one device. In one embodiment, the method includes acquiring device information that relates to the device and determining whether the device supports the at least one application based on the device information. The method may further include generating an electronic message for the device wherein the message contains at least one link for acquiring the at least one application when the device supports the application.
摘要:
A protection CMTS is available to immediately service a cable modem should that modem's service from a working CMTS fail for any reason. To speed the service transfer (cutover) from the working CMTS to the protection CMTS, the cable modem may preregister with the protection CMTS well before the cutover becomes necessary. The cable modem's registration with both the working CMTS and the protection CMTS preferably employs a single IP address, so that the cable modem need not obtain a new IP address during cutover. While the cable modem may register with both the working CMTS and the protection CMTS, the devices are designed or configured so that only the working CMTS injects a host route for the cable modem into the appropriate routing protocol. Only after cutover to the protection CMTS does the protection CMTS inject its host route.
摘要:
A protection CMTS is available to immediately service a cable modem should that modem's service from a working CMTS fail for any reason. To speed the service transfer (cutover) from the working CMTS to the protection CMTS, the cable modem may preregister with the protection CMTS well before the cutover becomes necessary. The cable modem's registration with both the working CMTS and the protection CMTS preferably employs a single IP address, so that the cable modem need not obtain a new IP address during cutover. While the cable modem may register with both the working CMTS and the protection CMTS, the devices are designed or configured so that only the working CMTS injects a host route for the cable modem into the appropriate routing protocol. Only after cutover to the protection CMTS does the protection CMTS inject its host route.