Abstract:
Disclosed herein are ethylene-based polymers generally characterized by a melt index of less than 15 g/10 min, a density from 0.91 to 0.945 g/cm3, a CY-a parameter at 190° C. from 0.2 to 0.6, an average number of long chain branches per 1,000,000 total carbon atoms of the polymer in a molecular weight range of 500,000 to 2,000,000 g/mol of less than 5, and a maximum ratio of ηΕ/3η at an extensional rate of 0.03 sec−1 in a range from 3 to 15. The ethylene polymers have substantially no long chain branching in the high molecular weight fraction of the polymer, but instead have significant long chain branching in the lower molecular weight fraction, such that polymer melt strength and bubble stability are maintained for the fabrication of blown films and other articles of manufacture. These ethylene polymers can be produced using a dual catalyst system containing a single atom bridged metallocene compound with an indenyl group and a cyclopentadienyl group, and an unbridged hafnium metallocene compound with two cyclopentadienyl groups.
Abstract:
Disclosed herein are ethylene-based polymers generally characterized by a melt index of less than 1 g/10 min, a density from 0.93 to 0.965 g/cm3, a CY-a parameter at 190° C. of less than 0.2, an average number of short chain branches per 1000 total carbon atoms of the polymer in a molecular weight range of 400,000 to 600,000 g/mol that is greater than that in a molecular weight range of 40,000 to 60,000 g/mol, and an average number of long chain branches per 1000 total carbon atoms of the polymer in a molecular weight range of 400,000 to 600,000 g/mol that is greater than that in a molecular weight range of 4,000,000 to 6,000,000 g/mol. The ethylene polymers can be used to fabricate pipes, blown films, and blow molded products, and the ethylene polymers can be produced with a dual catalyst system containing a single atom bridged or two carbon atom bridged metallocene compound with two indenyl groups or an indenyl group and a cyclopentadienyl group, and a single atom bridged metallocene compound with a fluorenyl group and a cyclopentadienyl group with an alkenyl substituent.
Abstract:
Disclosed are metallocene compounds, catalyst compositions comprising a metallocene compound, processes for polymerizing olefins, methods for making catalyst compositions, olefin polymers and articles made from olefin polymers. In an aspect, a metallocene compounds contain a fluorenyl ligand and a cyclopentadienyl ligand which are bridged by a linking group, in which the metallocene is characterized by [1] the cyclopentadienyl ligand being substituted with a C2-C18 heterohydrocarbyl group having an oxygen atom positioned 5 atoms distance or less from the cyclopentadienyl ligand and [2] the linking group having a pendant C3-C12 alkenyl group having a terminal C═C double bond. It has been discovered that a catalyst composition comprising a metallocene compound having these features can produce polyethylene having a low melt index in the absence of a second metallocene.
Abstract:
Disclosed herein are ethylene-based polymers generally characterized by a melt index of less than 15 g/10 min, a density from 0.91 to 0.945 g/cm3, a CY-a parameter at 190° C. from 0.2 to 0.6, an average number of long chain branches per 1,000,000 total carbon atoms of the polymer in a molecular weight range of 500,000 to 2,000,000 g/mol of less than 5, and a maximum ratio of ηE/3η at an extensional rate of 0.03 sec−1 in a range from 3 to 15. The ethylene polymers have substantially no long chain branching in the high molecular weight fraction of the polymer, but instead have significant long chain branching in the lower molecular weight fraction, such that polymer melt strength and bubble stability are maintained for the fabrication of blown films and other articles of manufacture. These ethylene polymers can be produced using a dual catalyst system containing a single atom bridged metallocene compound with an indenyl group and a cyclopentadienyl group, and an unbridged hafnium metallocene compound with two cyclopentadienyl groups.
Abstract:
Catalyst systems having both a metallocene catalyst component and a Ziegler-Natta component are disclosed. Such catalyst systems can contain a metallocene compound, an activator-support, an organoaluminum compound, and a Ziegler-Natta component comprising titanium supported on magnesium chloride.
Abstract:
Catalyst systems having both a metallocene catalyst component and a Ziegler-Natta component are disclosed. Such catalyst systems can contain a metallocene compound, an activator-support, an organoaluminum compound, and a Ziegler-Natta component comprising titanium supported on magnesium chloride.
Abstract:
Catalyst systems containing a Ziegler-Natta catalyst component are disclosed. Such catalyst systems can contain a co-catalyst and a supported catalyst containing a fluorided silica-coated alumina, a magnesium compound, and vanadium and/or tetravalent titanium.
Abstract:
The present invention provides dual catalyst systems and polymerization processes employing these dual catalyst systems. The disclosed polymerization processes can produce olefin polymers at higher production rates, and these olefin polymers may have a higher molecular weight and/or a lower melt index.
Abstract:
Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes can employ a catalyst system containing two or three metallocene components, resulting in ethylene-based copolymers that can have a medium density and improved stress crack resistance.
Abstract:
The present invention provides dual catalyst systems containing a metallocene catalyst and a hydrogen scavenging catalyst, and polymerization processes employing these dual catalyst systems. Due to a reduction in hydrogen levels in the polymerization processes, olefin polymers produced from these polymerization processes may have a higher molecular weight, a lower melt index, and higher levels of unsaturation.