Abstract:
A capacitive load drive circuit may comprise a high current drive amplifier configured to be coupled to a capacitive load during a high current ramp up of the voltage across the capacitive load to a cut off voltage; a low current drive amplifier configured to be connected to the capacitive load during a low current ramp up of the voltage across the capacitive load, from the cut off voltage to a maximum voltage across the capacitive load; and the high current drive amplifier configured to be connected to the capacitive load during a high current ramp down of the voltage across the capacitive load. The low current drive amplifier may be connected to the capacitive load during a period of steady state of the voltage across the capacitive load, intermediate the low current ramp up and the high current ramp down.
Abstract:
In accordance with embodiments of the present disclosure, an apparatus for measuring acceleration may include a spring-mounted mass, a positional encoder configured to measure a position of the spring-mounted mass and output one or more signals indicative of a sine and a cosine of the position, a driver to set and maintain an oscillation of the spring-mounted mass, and a decoder configured to process the one or more signals to calculate an acceleration of the spring-mounted mass.
Abstract:
A peak junction temperature monitoring system for a semiconductor device includes a peak power dissipation sensor for sensing the peak power dissipation in the device. A temperature sensor senses an average temperature of the device, and a peak junction temperature computation circuit generates a signal representative of a peak junction temperature based on input from the peak power dissipation sensor and the temperature sensor.
Abstract:
A peak junction temperature monitoring system for a semiconductor device includes a peak power dissipation sensor for sensing the peak power dissipation in the device. A temperature sensor senses an average temperature of the device, and a peak junction temperature computation circuit generates a signal representative of a peak junction temperature based on input from the peak power dissipation sensor and the temperature sensor.
Abstract:
In accordance with embodiments of the present disclosure, an apparatus for measuring acceleration may include a spring-mounted mass, a positional encoder configured to measure a position of the spring-mounted mass and output one or more signals indicative of a sine and a cosine of the position, a driver to set and maintain an oscillation of the spring-mounted mass, and a decoder configured to process the one or more signals to calculate an acceleration of the spring-mounted mass.
Abstract:
A system and method for charging heavy capacitive loads may comprise an n-stage stacked charging circuit wherein n is an integer greater than or equal to 2 and wherein the n-stage stacked charging circuit may comprise n−1 capacitors and a voltage supply, each sequentially electrically connected to the capacitive load in an order through a respective first through nth switch during a respective first through nth charging time period; the n−1th capacitors each sequentially electrically connected to the capacitive load in reverse order during a first through n−1th discharging time period through the respective n−1th through first switches. The system and method may comprise an n+1th switch electrically connecting the capacitive load to ground during an nth discharging period. The capacitive load may comprise a piezoelectric element, which may comprise an inkjet printer head inkjet actuator.
Abstract:
A capacitive load drive circuit may comprise a high current drive amplifier configured to be coupled to a capacitive load during a high current ramp up of the voltage across the capacitive load to a cut off voltage; a low current drive amplifier configured to be connected to the capacitive load during a low current ramp up of the voltage across the capacitive load, from the cut off voltage to a maximum voltage across the capacitive load; and the high current drive amplifier configured to be connected to the capacitive load during a high current ramp down of the voltage across the capacitive load. The low current drive amplifier may be connected to the capacitive load during a period of steady state of the voltage across the capacitive load, intermediate the low current ramp up and the high current ramp down.