Abstract:
A first preferred embodiment includes a flow cytometer with a fluidic system to draw a sample fluid into an interrogation zone, a light source to emit light toward the sample fluid in the interrogation zone, an optic system to collect and detect at least one of a scattered light and a fluorescent light from the interrogation zone, and a processor. The flow cytometer, if properly boxed and labeled, complies with the parcel post requirements of the United States Postal Service. A second preferred embodiment includes the method of supplying a flow cytometer by shipping the flow cytometer via the United States Postal Service. A third preferred embodiment includes the method of servicing a flow cytometer by receiving the flow cytometer from a user via the United States Postal Service and servicing the flow cytometer.
Abstract:
An optical system for guiding light from an interrogation zone to a detector system. The optical system includes an optical device, a first waveguide, and a second waveguide. The optical device is preferably adapted to collect and partition light into a first channel and a second channel of substantially similar light from a substantially singular orientation of the interrogation zone. The first waveguide is preferably adapted to guide the first channel from the optical device to a detector system without substantial interruption. Likewise, the second waveguide is preferably adapted to guide the second channel from the optical device to a detector system without substantial interruption. Preferably, the light of the first channel can be filtered without affecting the light of the second channel, and the light of the second channel can be filtered without affecting the light of the first channel.
Abstract:
The preferred embodiment of the invention includes a single integrated circuit for a handheld probe of an ultrasound system. The integrated circuit includes a two-dimensional array of at least 512 transducer cells, each transducer cell is adapted to receive a beam signal, generate an ultrasonic beam, detect an ultrasonic echo at multiple locations, and combine the ultrasonic echoes into a single multiplexed echo signal. Each transducer cell includes at least one ultrasonic beam generator and at least four ultrasonic echo detectors. The integrated circuit also includes a series of beam signal leads adapted to carry the beam signals to the transducer cells and a series of echo signal leads adapted to carry the multiplexed echo signals from the transducer cells.
Abstract:
The present invention includes a system and a method of representing a medical event. The method includes the steps of collecting 3D information on an event, identifying a non-linear aspect of the event, determining a non-planar slice of the 3D information that represents the non-linear aspect, and outputting the non-planar slice as a representation of the event. The system includes an imaging device for collecting 3D information on an event. The system further includes a processor for identifying a non-linear aspect of the event, determining a non-planar slice of the 3D information that represents the non-linear aspect and outputting the non-planar slice as a representation of the event.
Abstract:
The flow cytometry system of the present invention includes a flow channel including an interrogation zone. A light source and a light detector are connected to the interrogation zone, such that a sample flowing through the interrogation zone can be optically analyzed through methods known in the art of flow cytometry. A bubble detector is connected to the flow channel. A controller is connected to the bubble detector and is adapted to perform a predetermined output in response to the detection of a bubble in the flow channel. The predetermined output may include alerting a user as to the presence of a bubble, flagging potentially corrupted data, and ceasing data collection until the interrogation zone is clear of bubbles.
Abstract:
The first integrated circuit/transducer device 36 of the handheld probe includes CMOS circuits 110 and cMUT elements 112. The cMUT elements 112 function to generate an ultrasonic beam, detect an ultrasonic echo, and output electrical signals, while the CMOS circuits 110 function to perform analog or digital operations on the electrical signals generated through operation of the cMUT elements 112. The manufacturing method for the first integrated circuit/transducer device 36 of the preferred embodiment includes the steps of depositing the lower electrode S102; depositing a sacrificial layer S104; depositing a dielectric layer S106; removing the sacrificial layer S108, followed by the steps of depositing the upper electrode S110 and depositing a protective layer on the upper electrode S112.
Abstract:
The first integrated circuit/transducer device 36 of the handheld probe includes CMOS circuits 110 and cMUT elements 112. The cMUT elements 112 function to generate an ultrasonic beam, detect an ultrasonic echo, and output electrical signals, while the CMOS circuits 110 function to perform analog or digital operations on the electrical signals generated through operation of the cMUT elements 112. The manufacturing method for the first integrated circuit/transducer device 36 of the preferred embodiment includes the steps of depositing the lower electrode S102; depositing a sacrificial layer S104; depositing a dielectric layer S106; depositing the upper electrode S108; depositing a protective layer on the upper electrode S110; and removing the sacrificial layer S112. In the preferred embodiment, the manufacturing method also includes the step of depositing a sealant layer to seal a cavity between the lower electrode and the upper electrode S114.
Abstract:
The fluidic system with an unclogging feature of the preferred embodiment includes a flow channel, a sheath pump to pump sheath fluid from a sheath container into an interrogation zone, and a waste pump to pump waste fluid from the interrogation zone into a waste container. The sheath pump and/or the waste pump draw sample fluid from a sample container into the interrogation zone. The fluidic system also includes a controller to adjust the flow rate of the sample fluid from the sample container into the interrogation zone. The pump and controller cooperate to propagate a pulsation through the flow channel from the pump if the flow channel is clogged. The fluidic system is preferably incorporated into a flow cytometer with a flow cell that includes the interrogation zone.
Abstract:
The flow cytometry system of the present invention includes a flow channel including an interrogation zone. A light source and a light detector are connected to the interrogation zone, such that a sample flowing through the interrogation zone can be optically analyzed through methods known in the art of flow cytometry. A bubble detector is connected to the flow channel. A controller is connected to the bubble detector and is adapted to perform a predetermined output in response to the detection of a bubble in the flow channel. The predetermined output may include alerting a user as to the presence of a bubble, flagging potentially corrupted data, and ceasing data collection until the interrogation zone is clear of bubbles.
Abstract:
An embodiment of the invention includes a method of capturing a series of images of a subject patient with a medical probe having a magnification factor, a frame rate, and an image resolution. The method includes the determining a relative motion between a subject patient and a medical probe and comparing the relative motion to a threshold. The method also includes, the method includes selecting a motion mode for the medical probe and capturing a first series of images of the subject patient with the medical probe in the motion mode if the relative motion is greater than the threshold. The method also includes selecting a stability mode for the medical probe and capturing a second series of images of the subject patient with the medical probe in the stability mode if the relative motion is less than the threshold.