Abstract:
A filter assembly is provided which includes a Faraday cage interface. Electrical noise is filtered by the Faraday cage interface. The Faraday cage interface is configured to prevent passage of electromagnetic waves.
Abstract:
A multiple DC-to-AC inverter system, which is suitable for an electric or hybrid vehicle application, includes a plurality of inverters controlled by a single controller. One example embodiment includes four three-phase inverters driving one six-phase motor, where the output of the first inverter is coupled to the output of the fourth inverter and the output of the second inverter is coupled to the output of the third inverter. In response to the failure of an inverter, the drive signals to the inverter that is coupled to the faulty inverter are updated such that the partner inverter can remain active without being driven into an over-current condition.
Abstract:
A high current interconnection system is provided which can be configured to couple a motor to an inverter. A high current interconnection system comprises a bus bar, a motor winding coupled to the bus bar, and a thermal interface. The motor winding is configured to receive a current. The thermal interface can be coupled to at least one of the motor winding or the bus bar. The thermal interface is configured to reduce a temperature of the motor winding or bus bar which the thermal interface is coupled to.
Abstract:
Methods for controlling a multiple DC-to-AC inverter system, which is suitable for an electric or hybrid vehicle application, are disclosed. In one embodiment, if an inverter fails or suffers from degraded performance (faulty inverter), the faulty inverter is disabled and drive signals to a healthy inverter that is coupled to the faulty inverter are updated such that the healthy inverter can remain active without being driven into an over-current condition.
Abstract:
A vehicular power inverter connector assembly is provided. The assembly includes a housing, a plurality of first engagement formations on the housing shaped to mate with a plurality of inverter engagement formations on a vehicular power inverter, a plurality of second engagement formations on the housing shaped to mate with a plurality motor engagement formations on a vehicular motor, and a plurality of current sensors connected to the housing and configured to detect current flowing between the vehicular power inverter and the vehicular motor.
Abstract:
An electrical system as described herein is suitable for use in an electric or hybrid vehicle. The electrical system includes electrical devices, such as power transistors, coupled to an electrically and thermally conductive bus bar. The respective nodes of the electrical devices are coupled to the bus bar such that the bus bar carries a combined signal generated by the electrical devices. The bus bar is also thermally coupled to a conduction heat transfer system, such as a liquid cooled cold plate. Thus, the bus bar functions as both an electrical conduit and a conduction-based heat sink for the electrical system.
Abstract:
Methods and apparatus are provided for protecting a motor control circuit in a permanent magnet electric motor system. The permanent magnet electric motor system includes a permanent magnet electric motor having a predetermined number of windings corresponding to the phases of the permanent magnet electric motor and a direct current (DC) bus coupled to a power source for providing operational power for the electric motor system. A motor control circuit is connected to the DC bus for receiving the operational power therefrom and is connected to the windings of the permanent magnet electric motor for controlling the permanent magnet electric motor. A protection circuit is connected to the DC bus for receiving the voltage therefrom for operation of the protection circuit and for detecting predetermined motor control circuit fault conditions from voltage sensed on the DC bus and in response thereto providing protection for the motor control circuit.
Abstract:
A power inverter is provided. The power inverter includes a housing having first and second openings therein and at least partially defining a cavity and a fluid passageway on first and second sides of the cavity. First and second power modules are connected to the housing on the respective first and second sides of the cavity. A capacitor assembly is within the cavity such that when heat is generated by the first and second power modules and the capacitor assembly and a fluid flows into the first opening, through the fluid passageway, and out of the second opening, at least some of the heat is transferred from the first and second power modules and the capacitor assembly to the fluid and is removed through the second opening.