Abstract:
LED based lamps and bulbs are disclosed that comprise a pedestal having a plurality of LEDs, wherein the pedestal at least partially comprises a thermally conductive material. A heat sink structure is included with the pedestal thermally coupled to the heat sink structure. A remote phosphor is arranged in relation to the LEDs so that at least some light from the LEDs passes through the remote phosphor and is converted to a different wavelength of light. Some lamp or bulb embodiments can emit a white light combination of light from the LEDs and the remote phosphor. These can include LEDs emitting blue light with the remote phosphor having a material that absorbs blue light and emits yellow or green light. A diffuser can be included to diffuse the emitting light into the desired pattern, such as omnidirectional.
Abstract:
According to one example aspect, a device for venting a luminaire compartment comprises a luminaire compartment disposed between first and second luminaire components and one or more luminaire gaskets maintaining a weather-proof seal about the luminaire compartment. The device further comprises one or more venting tubes traversing the one or more luminaire gaskets such that the one or more venting tubes extend into the luminaire compartment and the one or more venting tubes equalize one or more environmental parameters of the luminaire compartment with one or more environmental parameters of the ambient environment.
Abstract:
An LED based lamp has an optically transmissive enclosure connected to a base. The base may include a heat sink. A substrate is positioned in the enclosure and supports a plurality of LEDs where the periphery of the substrate has alternating recessed portions and protruding portions that define a plurality of laterally extending projections. One LED is located on each of the projections to increase the amount of down light generated by the lamp.
Abstract:
LED based lamps and bulbs are disclosed that comprise a pedestal having a plurality of LEDs, wherein the pedestal at least partially comprises a thermally conductive material. A heat sink structure is included with the pedestal thermally coupled to the heat sink structure. A remote phosphor is arranged in relation to the LEDs so that at least some light from the LEDs passes through the remote phosphor and is converted to a different wavelength of light. Some lamp or bulb embodiments can emit a white light combination of light from the LEDs and the remote phosphor. These can include LEDs emitting blue light with the remote phosphor having a material that absorbs blue light and emits yellow or green light. A diffuser can be included to diffuse the emitting light into the desired pattern, such as omnidirectional.
Abstract:
A luminaire includes a first waveguide having a first primary light emitting surface directed in a first direction and a first secondary light emitting surface directed in a second direction. A second waveguide having a second primary light emitting surface directed in the second direction and a second secondary light emitting surface directed in the first direction. A first plurality of LEDs are optically coupled to the first waveguide and a second plurality of LEDs are optically coupled to the second waveguide. The first and second waveguides are independently operable. The first and second plurality of LEDs may comprise LED groups where each of the LED groups are independently controllable. The light emission pattern and light properties of the emitted light are controllable
Abstract:
An LED based lamp has an optically transmissive enclosure connected to a base. The base may include a heat sink. A substrate is positioned in the enclosure and supports a plurality of LEDs where the periphery of the substrate has alternating recessed portions and protruding portions that define a plurality of laterally extending projections. One LED is located on each of the projections to increase the amount of down light generated by the lamp.
Abstract:
A luminaire includes a first waveguide having a first primary light emitting surface directed in a first direction and a first secondary light emitting surface directed in a second direction. A second waveguide having a second primary light emitting surface directed in the second direction and a second secondary light emitting surface directed in the first direction. A first plurality of LEDs are optically coupled to the first waveguide and a second plurality of LEDs are optically coupled to the second waveguide. The first and second waveguides are independently operable. The first and second plurality of LEDs may comprise LED groups where each of the LED groups are independently controllable. The light emission pattern and light properties of the emitted light are controllable.
Abstract:
A LED lamp has a base and an at least partially optically transmissive enclosure connected to the base. A heat sink is partially disposed in the enclosure and supports a plurality of LEDs. The heat sink comprising a mounting portion positioned in the enclosure for supporting the LEDs and a heat dissipating portion exposed to the ambient environment where the interior of the enclosure is exposed to the ambient environment. The heat sink have a plurality of separate heat sink structures that are mounted to the lamp independently of one another. Each heat sink structure may have a thickness of approximately 1-5 mm. Each heat sink structure may in some embodiments weigh approximately 3.8 to 7.7 grams and in other embodiments weigh approximately 27 grams.
Abstract:
A LED lamp has a base and an at least partially optically transmissive enclosure connected to the base. A heat sink is partially disposed in the enclosure and supports a plurality of LEDs. The heat sink comprising a mounting portion positioned in the enclosure for supporting the LEDs and a heat dissipating portion exposed to the ambient environment where the interior of the enclosure is exposed to the ambient environment. The heat sink have a plurality of separate heat sink structures that are mounted to the lamp independently of one another. Each heat sink structure may have a thickness of approximately 1-5 mm. Each heat sink structure may in some embodiments weigh approximately 3.8 to 7.7 grams and in other embodiments weigh approximately 27 grams.