Abstract:
The evaporative fuel processing system includes a fuel tank, a canister, a pump, a pressure detection unit, a temperature detection unit, and a leak diagnosis unit a leak diagnosis unit configured to diagnose leak in the diagnostic object based on a first pressure change which is a change in pressure detected by the pressure detection unit when the temperature in the diagnostic object changes, a second pressure change which is a change in pressure detected by the pressure detection unit when the inside of the diagnostic object is pressurized or depressurized by the pump, a detected temperature by the temperature detection unit, a first preparation information and a second preparation information.
Abstract:
A pump casing has two external communication holes communicating with an outside. A partition member partitioning an interior of the pump casing into a first space and a second space. The first space communicates with the two external communication holes. The partition member have two internal communication holes communicating the first space with the second space. A first rotor member is rotatably accommodated in the first space. A second rotor member is rotatably accommodated in the second space. A torque switching unit is configured to switch between transmission of a running torque selectively to the first rotor member and transmission of the running torque to both the first rotor member and the second rotor member.
Abstract:
A fuel vapor leakage detection device performs a fuel vapor leakage detection method to detect a clogging of passages in an evaporated fuel processing system by (i) switching a switching valve after measuring a first reference pressure, (ii) determining whether a detected pressure equals atmospheric pressure after opening a purge valve, (iii) recording the detected pressure after closing the purge valve, and (iv) switching the switching valve to depressurize an atmospheric system and to determine whether a current detection value of the pressure sensor is the same as the first reference pressure. Then, a second reference pressure is measured for comparison with the first reference pressure, to determine whether the evaporation system is clogged. In such manner, leakage and the clogging of the passages in an evaporated fuel processing system may be detected.
Abstract:
An evaporation leakage checking system includes a pump, a pump passage unit, a tank passage unit, a specified passage unit, an atmosphere passage unit, a flow-passage area changing unit, an atmosphere valve unit, a pressure sensing unit, and a control unit. The control unit includes a calculating unit that calculates a leakage threshold, based on a first pressure, a first area, an Nth pressure, an Nth area, and a reference area that is predetermined, and a leakage checking unit that activates the pump, closes the atmosphere passage unit by changing the flow-passage area of the atmosphere passage unit by using the atmosphere valve unit, and checks the existence of the evaporation leakage based on the leakage threshold and a checking pressure that is the pressure sensed by the pressure sensor in a case where a communication between the tank passage unit and the pump passage unit is allowed.
Abstract:
A tank passage communicates a canister housing with a fuel tank. A purge passage communicates the canister housing with an intake air system. An atmospheric air passage communicates the canister housing with an atmosphere. A valve housing accommodating a valve element is located in a recessed portion defined with a first inner wall and a second inner wall. A seal member is located on a radially outside of the valve housing to seal the recessed portion. The first inner wall has a first opening to communicate the canister housing with the recessed portion. The second inner wall has a second opening to communicate the recessed portion with the atmospheric air passage. The first opening or the second opening is defined around a valve seat. The valve element is seated on and lifted from the valve seat to control communication between the canister housing and the atmospheric air passage.
Abstract:
A controller controls a valve device for opening and closing of a passage to control a flow of evaporative fuel evaporating and flowing from a fuel tank. The valve device includes a valve body housed in the passage to open and close the passage, a biasing member biasing the valve body to close the passage, and a driver driving the valve body to open the fuel passage. The controller includes a detector detecting load of the driver and a determiner to determine the position of the valve body. The determiner determines that the passage is open when a magnitude of the change of the driver load is equal to or greater than a threshold value. The controller accurately detects an open valve position without detecting an internal pressure change of the fuel tank.
Abstract:
An inspection apparatus includes a pressure sensor, a reference orifice, a pump, and a switching valve. The reference orifice is disposed in a first communication passage communicating a pressure passage receiving the pressure sensor, with a tank passage communicating with a fuel tank. The pump depressurizing or pressurizing the pressure passage includes an intake port and a discharge port, and one of which communicates with an atmospheric passage communicating with the atmosphere and the other one communicates with the pressure passage. The switching valve and switches between a state shutting off a communication of a second communication passage that leads to the pressure passage and passages other than the pressure passage and communicating the atmospheric passage with the tank passage and a state shutting off a communication of the atmospheric passage and passages other than the pump and the atmosphere and communicating the second communication passage with the tank passage.
Abstract:
A leakage diagnosis device for an evaporative fuel treatment device includes a first vent valve, a second vent valve, and a pump. The first vent valve is configured to block a first atmospheric passage, which is a main passage of an atmospheric passage and connects a canister with an atmospheric opening. The second vent valve is configured to block a second atmospheric passage, which is a bypass passage of the first atmospheric passage and connects the canister with the atmospheric opening. The pump is provided on a side of the atmospheric opening relative to the second vent valve in the second atmospheric passage, and is configured to pressurize or depressurize the second atmospheric passage. A malfunction diagnosis device performs a malfunction diagnosis based on an output value of a pressure sensor, a current value of the pump, or an output value of an air-fuel ratio sensor.
Abstract:
The vane pump has a pump chamber, in which a first inner plate and a second inner plate are movably accommodated at each of axial ends of a rotor. In a case that an electric motor is arranged at a lower side of the vane pump, the first inner plate is moved in a direction to the second inner plate by a force of gravity, so that the first inner plate is brought into contact with a first axial end of the rotor. As a result, an upper side axial open end of each pumping room, which is respectively defined by multiple vanes, is closed by the first inner plate. An amount of air leaking from one of the pumping rooms to the other pumping rooms can be reduced.
Abstract:
A tank passage communicates a canister housing with a fuel tank. A purge passage communicates the canister housing with an intake air system. An atmospheric air passage communicates the canister housing with an atmosphere. A valve housing accommodating a valve element is located in a recessed portion defined with a first inner wall and a second inner wall. A seal member is located on a radially outside of the valve housing to seal the recessed portion. The first inner wall has a first opening to communicate the canister housing with the recessed portion. The second inner wall has a second opening to communicate the recessed portion with the atmospheric air passage. The first opening or the second opening is defined around a valve seat. The valve element is seated on and lifted from the valve seat to control communication between the canister housing and the atmospheric air passage.