Abstract:
Polyester-co-carbonate polyols and methods for producing the same are provided. The method comprises reacting one or more alcohols having an OH functionality of two or more with one or more organic diacids to form a reaction mixture, adding a first amount of dialkyl carbonate to the reaction mixture to remove water remaining from the reaction mixture by azeotropic drying, adding a transesterification catalyst to the dialkyl carbonate containing reaction mixture and adding a second amount of dialkyl carbonate to the catalyst containing reaction mixture.
Abstract:
A method for forming a polyurethane coating on an industrial roller includes applying a coating that is a product of a coating forming reaction mixture, which includes a prepolymer component and a curative component, to an industrial roller. The prepolymer component includes a polycarbonate prepolymer, which is a product of a prepolymer forming reaction mixture that includes an isocyanate component and a polycarbonate polyol, and the prepolymer component is present in the coating forming reaction mixture in an amount from 30 wt % to 80 wt %, based on a total weight of the coating forming reaction mixture. The curative component includes a chlorinated aromatic diamine curative agent, and the curative component is present in the coating forming reaction mixture in an amount from 5 wt % to 20 wt %, based on the total weight of the coating forming reaction mixture. Further, the coating is cured to form a polyurethane coating layer on the industrial roller.
Abstract:
A two-component curable adhesive or sealant composition is provided. The first component may comprise a mixture of at least one polyol selected from the group comprising a polyester polyol, a polyester-polycarbonate copolymer polyol, and combinations thereof, a resin, and optionally a solvent. The second component may comprise a prepolymer obtained by reacting a polyester-polycarbonate copolymer polyol which is the reaction product of a polyester polyol which is the reaction product of one or more organic acids, and one or more glycols having a functionality of two or more and one or more polycarbonate polyols, at least one organic polyisocyanate component, and at least one chain extending agent and optionally a solvent. Alternatively, the first component may comprise a polyester-polycarbonate copolymer polyol, a resin, and optionally a solvent. The second component may comprise a polyisocyanate curative and optionally a solvent. The cured adhesive exhibits improved hydrolytic properties while maintaining excellent processability and adhesive properties.
Abstract:
The present invention describes a method to remove metals present in a mixture comprising one or more organic amines comprising the step of contacting the mixture with a silica-polyethyleneimine adsorbent.
Abstract:
Methods of producing a composition comprising a crosslinkable silane-terminated polymer having at least one cross-linkable silyl group in each molecule are provided. The method may comprise providing a polymer having at least one unsaturated group and at least one alcohol hydroxyl group in each molecule and having a number average molecular weight between about 100 and about 5,000, adding to the polymer a compound having a hydrogen-silicon bond and a crosslinkable silyl group in each molecule and a hydrosilylation catalyst to thereby carry out a hydrosilylation reaction to form a composition comprising hydrosilylated polymers, wherein the hydrosilylation reaction has a hydrosilylation efficiency greater than 50% as determined by 1H-NMR, capping the hydrosilylated polymers by adding the hydrosilylated polymer to at least one isocyanate at an index of between about 100 and about 250, and reacting the isocyanate capped hydrosilylated polymer with a polyol having a nominal functionality of at least 2 to form the composition comprising a crosslinkable silane-terminated polymer.
Abstract:
Embodiments of the invention provide for methods of producing a polycarbonate polyol. The method includes charging a vessel with butanediol, charging the vessel with a polymerization catalyst, and adding to the vessel dimethyl carbonate at a rate of at least 2.0 g of DMC per minute per kg of BDO to produce polycarbonate polyol at a polycarbonate polyol yield of at least 80% of a theoretical yield.
Abstract:
Embodiments of the invention provide for paper mill equipment that can better withstand the conditions of a paper Mill. Embodiments encompass paper mill equipment that incorporate a polyurethane layer having a hysteresis value of less than 70% and a permanent set of less than 30%. The polyurethane layer includes a polyurethane produced by curing a mixed composition. The mixed composition includes at least a urethane prepolymer (A) and at least a curing agent (B) having an active hydrogen group (H). The urethane prepolymer (A) has at least one terminal isocyanate group and is obtained by reacting at least a polyisocyanate compound (a) with at least a polycarbonate diol compound (b) having a number average molecular weight of at least 1500 g/mol. The curing agent (B) includes at least an amine compound. The elastomer compositions are also useful to coat the acid pickling roller in the steel industry.