Abstract:
A curable resin composition comprising: (1) a urethane (meth)acrylate; (2) a reactive diluent selected from the group consisting of i) a hydroxyl alkyl (meth)acrylate monomer where the acrylate group, which is attached to the carbonyl group, is attached to a hydrogen or a methyl group and the carbonyl group is attached to the hydroxyl group thru an R2 alkylene group containing 2 to 18 carbon atoms per molecule.
Abstract:
A process for making a curable resin composition comprising the steps of: (1) reacting a) an isocyanate; and b) a polyol mixture with a bimodal distribution of i) a first polyol mixture comprising polyols having an average equivalent weight of from 50 to 400; and ii) a second polyol mixture comprising polyols having an average equivalent weight of from 1000 to 5000 to form a urethane prepolymer; and (2) adding a capping agent to the urethane prepolymer to form the curable resin composition.
Abstract:
Moisture-curable polysilylated polyether compositions contain titanium (IV) catalysts and/or zinc/amidine catalyst mixtures and are devoid of or nearly devoid of tin compounds. The titanium catalysts and zinc/amide catalyst mixtures are surprisingly found to be highly effective, even when the moisture-curable silane groups of the compositions are dialkoxysilyl groups. The moisture-cured compositions are surprisingly stable when aged at high temperatures. In addition, the compositions are surprisingly storage-stable in the uncured state, particularly when the polysilylated polyethers contain aliphatic urethane groups. The polyether compositions are also preferably devoid of aminosilane adhesion promoters.
Abstract:
Polyurethanes are made by reacting, in one or more reaction steps, a) at least one organic polyisocyanate, b-1) one or more polyols having a hydroxyl equivalent weight of greater than 250 g/mol and a nominal hydroxyl functionality of 2 to 4 and b-2) at least one alkoxylated Mannich base to produce a polyurethane polymer having a density of at least 750 kg/m3 and a hard segment content of 20 to 80% by weight.
Abstract:
Moisture-curable resin compositions include a mixture of one or more polysilylated of ethers and one or more polyether monosilanes. The polyether monosilanes have one hydrolysable silane group per molecule, and the hydro lysable silane group has at least two hydrolysable substituents. The polyether monosilane is an effective plasticizer and viscosity reducer. Despite the presence of the polyether monosilane, the resins compositions cure to form cured sealants having useful tensile and elongation properties.
Abstract:
Polyester-co-carbonate polyols and methods for producing the same are provided. The method comprises reacting one or more alcohols having an OH functionality of two or more with one or more organic diacids to form a reaction mixture, adding a first amount of dialkyl carbonate to the reaction mixture to remove water remaining from the reaction mixture by azeotropic drying, adding a transesterification catalyst to the dialkyl carbonate containing reaction mixture and adding a second amount of dialkyl carbonate to the catalyst containing reaction mixture.
Abstract:
A curable resin composition comprising: (1) a urethane (meth)acrylate; (2) a reactive diluent selected from the group consisting of i) a hydroxyl alkyl (meth)acrylate monomer where the acrylate group, which is attached to the carbonyl group, is attached to a hydrogen or a methyl group and the carbonyl group is attached to the hydroxyl group thru an R2 alkylene group containing 2 to 18 carbon atoms per molecule.
Abstract:
Polymers are prepared from a reaction mixture that contains a polyene compound, an epoxy resin, a mixture of a thiol curing agent and an amine curing agent, and a basic catalyst. The polyene compound has an average of at least two groups containing aliphatic carbon-carbon double bonds capable of reaction with a thiol group. At least one of said aliphatic carbon-carbon double bonds is separated from each other said aliphatic carbon-carbon double bond by an aliphatic spacer group having a weight of at least 500 atomic mass units. These polymers are typically phase-separated materials having good elongation and tensile properties.
Abstract:
Embodiments of the invention provide for methods of producing a polycarbonate polyol. The method includes charging a vessel with butanediol, charging the vessel with a polymerization catalyst, and adding to the vessel dimethyl carbonate at a rate of at least 2.0 g of DMC per minute per kg of BDO to produce polycarbonate polyol at a polycarbonate polyol yield of at least 80% of a theoretical yield.