Abstract:
A polyester polyol comprising at least one esterified unit of formula (I) wherein L is a difunctional aliphatic group having from two to six carbon atoms and R is a C1-C4 alkyl group.
Abstract:
A polyester polyol is formed in a polycondensation reaction between an aromatic dicarboxylic acid, a polyol, and an epoxy compound having a straight chain alkyl or alkenyl group having at least six carbon atoms. The polyester polyol exhibits excellent compatibility with hydrocarbon blowing agents. As such, it is a useful component in rigid polyurethane foam formulations that are contain hydrocarbon blowing agents.
Abstract:
Embodiments of the invention provide for polyurethane-based sealants. The sealants include a reaction product of a reaction system which includes at least one isocyanate, and at least one polyester polyol. The polyester polyol includes a reaction product of a polyester reaction mixture which includes one or more hydrophobic monomers, one or more organic diacids or methyl esters thereof, and one or more diols.
Abstract:
Provided is a two-component composition comprising one or more polyisocyanate and one or more hybrid polyol comprising reaction residues of (i). one initiator polyol having N hydroxyl groups, wherein N is 2 or greater, and wherein the number-average molecular weight of said initiator polyol is 900 or lower, (ii). one or more anhydride, and (iii). two or more alkylene oxides having the structure wherein said R3 is hydrogen or an alkyl group, wherein the mole ratio of said reaction residues of anhydride to said reaction residues of initiator polyol is N:1 or less; and wherein the mole ratio of said reaction residues (iii) to said reaction residues of initiator polyol is 20:1 or less wherein at least one said reaction residue of an anhydride is attached directly to one of said reaction residues of a higher-alkylene oxide.
Abstract:
Polyester-co-carbonate polyols and methods for producing the same are provided. The method comprises reacting one or more alcohols having an OH functionality of two or more with one or more organic diacids to form a reaction mixture, adding a first amount of dialkyl carbonate to the reaction mixture to remove water remaining from the reaction mixture by azeotropic drying, adding a transesterification catalyst to the dialkyl carbonate containing reaction mixture and adding a second amount of dialkyl carbonate to the catalyst containing reaction mixture.
Abstract:
A polyester polyol is formed in a polycondensation reaction between an aromatic dicarboxylic acid, a polyol, and an epoxy compound having a straight chain alkyl or alkenyl group having at least six carbon atoms. The polyester polyol exhibits excellent compatibility with hydrocarbon blowing agents. As such, it is a useful component in rigid polyurethane foam formulations that are contain hydrocarbon blowing agents.
Abstract:
A two-component curable adhesive or sealant composition is provided. The first component may comprise a mixture of at least one polyol selected from the group comprising a polyester polyol, a polyester-polycarbonate copolymer polyol, and combinations thereof, a resin, and optionally a solvent. The second component may comprise a prepolymer obtained by reacting a polyester-polycarbonate copolymer polyol which is the reaction product of a polyester polyol which is the reaction product of one or more organic acids, and one or more glycols having a functionality of two or more and one or more polycarbonate polyols, at least one organic polyisocyanate component, and at least one chain extending agent and optionally a solvent. Alternatively, the first component may comprise a polyester-polycarbonate copolymer polyol, a resin, and optionally a solvent. The second component may comprise a polyisocyanate curative and optionally a solvent. The cured adhesive exhibits improved hydrolytic properties while maintaining excellent processability and adhesive properties.
Abstract:
Polyesters and polyol formulations comprising polyesters used in the preparation of polyisocyanurate rigid foams with improved green strength properties are provided. In some embodiments, a polyester which is the reaction product of (a) an aromatic component comprising 80 mole percent or greater of terephthalic acid, (b) at least one polyether polyol having a nominal functionality of 2, a molecular weight of 150 to 1,000 and a polyoxyethylene content of at least 70% by weight of the polyether polyol, (c) at least one glycol different than (b) having a nominal functionality of 2 and a molecular weight from 60 to 250, and (d) at least one polyol having a molecular weight of 60 to 250 and a nominal functionality of at least 3, wherein (a), (b), (c), and (d) are present in the reaction on a percent weight basis of 20 to 60 weight percent of (a), 20 to 50 weight percent of (b), 10 to 30 weight percent of (c), and 5 to 20 weight percent of (d) is provided.