Abstract:
The present disclosure provides a die assembly for producing a microcapillary film. The die assembly includes a first die plate, a second die plate, a plurality of multi-jackbolt tensioners connecting the first die plate to the second die plate, a manifold, and a plurality of nozzles. The manifold is located between the pair of die plates and defines a plurality of film channels therebetween. The plurality of film channels converge into an elongate outlet, wherein a thermoplastic material is extrudable through the plurality of film channels and the elongate outlet to form a microcapillary film. The plurality of nozzles are located between the plurality of film channels. The plurality of nozzles are operatively connected to a source of channel fluid for emitting the channel fluid between layers of the microcapillary film, whereby a plurality of microcapillary channels are formed in the microcapillary film.
Abstract:
The present invention is premised upon -m improved photovoltaic building sheathing member (“PV device”), more particularly to a flexible low modulus photovoltaic building sheathing member, the member comprising: a flexible photovoltaic cell assembly, a body portion comprised of a body material and connected to a; peripheral edge segment of the photovoltaic cell assembly, wherein the body portion has a cross-sectional area of at least 35 mm2 within 1 cm on at least 95 percent of points along the peripheral edge segment: wherein the body material comprises a composition having a modulus of 5 to 200 MPa between a temperature of −40 to 85° C., with a coefficient of thermal expansion (GTE) below 100×10−6/° C., and the body portion exhibiting a warpage value of less than 15 mm.
Abstract:
An apparatus comprising: (a) a mandrel; (b) an internal guide spaced apart from the mandrel; (c) an external guide extending around all or a portion of the internal guide and being spaced apart from the mandrel; wherein a pipe extends between the internal guide and the external guide and then over the mandrel so that the mandrel changes one or more dimensions of the pipe.
Abstract:
An apparatus comprising: (a) a mandrel; (b) an internal guide spaced apart from the mandrel; (c) an external guide extending around all or a portion of the internal guide and being spaced apart from the mandrel; wherein a pipe extends between the internal guide and the external guide and then over the mandrel so that the mandrel changes one or more dimensions of the pipe.
Abstract:
The present invention relates to a process to reduce internal stresses in insulation molded onto complex pipes, preferably complex subsea pipe, to reduce cracking in the molded insulation. Insulation materials applies to complex pipes comprising branches, i.e., valves, and the like, may be susceptible to cracking at, or near where the branch connects to the pipe as the coating of insulation material cures or hardens. The process of the present invention aims to reduce post molded cracking by reducing molded in stress at the branch/pipe junction. This is accomplished by providing a preform at or near a branch/pipe junction prior to applying the coating of insulation material.
Abstract:
A solar module (2) comprising: (a) a plurality of interconnected photovoltaic cells (4); (b) a forward protective layer (22); (c) a rearward protective layer (24); and (d) an reinforcement (10); wherein the reinforcement is integrally located within the solar module and extends from a location substantially proximate to the forward protective layer to a location substantially proximate to the rearward protective layer.
Abstract:
A solar module (2) comprising: (a) a plurality of interconnected photovoltaic cells (4); (b) a forward protective layer (22); (c) a rearward protective layer (24); and (d) an reinforcement (10); wherein the reinforcement is integrally located within the solar module and extends from a location substantially proximate to the forward protective layer to a location substantially proximate to the rearward protective layer.
Abstract:
The present disclosure provides a die assembly for producing a microcapillary film. The die assembly includes a first die plate, a second die plate, a plurality of multi-jackbolt tensioners connecting the first die plate to the second die plate, a manifold, and a plurality of nozzles. The manifold is located between the pair of die plates and defines a plurality of film channels therebetween. The plurality of film channels converge into an elongate outlet, wherein a thermoplastic material is extrudable through the plurality of film channels and the elongate outlet to form a microcapillary film. The plurality of nozzles are located between the plurality of film channels. The plurality of nozzles are operatively connected to a source of channel fluid for emitting the channel fluid between layers of the microcapillary film, whereby a plurality of microcapillary channels are formed in the microcapillary film.
Abstract:
The present invention: is premised upon an improved photovoltaic building sheathing member (“PV device”), more particularly to a flexible high modulus photovoltaic building sheathing member, the member comprising: a flexible photovoltaie eel! assembly, a body portion comprised of a body material and connected to a peripheral edge segment of the photovoltaic cell assembly, wherein; the body portion has a cross-sectional area of at least 35 mm2 within 1 cm oft at least 95 percent of points along the peripheral edge segment; wherein the body material comprises a composition having a modulus of 1600 to 9000 MPa between a temperature of −40 to 85° C., with a coefficient of thermal expansion (GTE) between 5×10−6/° C. and 55×10−6/° C. and the body portion exhibiting a warpage value of less than 15 mm.
Abstract:
An article of manufacture includes a first and second PV cell layer, where the first and second PV cell layers are at least partially displaced from each other and define a continuous optical coverage area throughout a solar active area. The article provides for enhanced utilization of the active solar area.