Abstract:
An acoustic attenuator for a turbomachine and methodology for additively manufacturing the acoustic attenuator are provided. The acoustic attenuator includes an annular body (202) having an outer surface (204) and an inner surface (206). The inner surface of the annular body may define a bore (208) extending along a longitudinal axis (209) of the acoustic attenuator between a first end and a second end of the acoustic attenuator. The annular body may be formed by a plurality of axially-successive cross-sectional layers (e.g., 632, 634, 636) unitized between the first end and the second end of the acoustic attenuator. The plurality of axially-successive cross-sectional layers may be transversely disposed relative to the longitudinal axis of the acoustic attenuator. At least some axially-successive cross-sectional layers of the plurality of axially-successive cross-sectional layers (e.g., 632, 634, 636) defining a pocket (214) disposed between the outer surface and the inner surface of the annular body. At least a segment of a periphery of the pocket comprises two sides (1452, 1454) arranged to join at a common end point to form an apex (1460) of the pocket.
Abstract:
A method for protecting a turbomachine from corrosion may include creating a first sand mold in a drag of a casting flask, coupling a cope of the casting flask to the drag, removing the runner pin and the at least one riser pin from the cope to expose a runner and at least one riser, respectively, and pouring a molten first material in the runner to cast a first component of the turbomachine. The method may further include removing the first sand mold, creating a second sand mold utilizing the first component in the drag, coupling the cope to the drag, removing the runner pin and the at least one riser pin from the cope to expose a runner and at least one riser, respectively, and pouring a molten second material in the runner to cast a second component of the turbomachine integral with the first component.
Abstract:
A bearing and/or seal assembly where pressurized gas (e.g., air) may be arranged to produce a contact-free bearing and/or seal is provided. The assembly includes a permeable body (12) including structural features (13) selectively engineered to convey a pressurized gas (Ps) from an inlet side (20) side of the permeable body to an outlet side (22) of the permeable body to form an annular film of the pressurized gas relative to the rotatable shaft. Disclosed embodiments may be produced by way of three-dimensional (3D) Printing/Additive Manufacturing (AM) technologies with practically no manufacturing variability; and may also cost-effectively and reliably benefit from the relatively complex geometries and the features and/or conduits that may be involved to, for example, form the desired distribution pattern or impart a desired directionality to the pressurized gas conveyed through the permeable body of the bearing and/or seal assembly.
Abstract:
An impeller may include a hub section, a plurality of blades, and a shroud. The hub section may be mounted on a rotatable shaft. The hub section may define a central opening for the rotatable shaft to extend therethrough and may define a plurality of holes disposed in a circular manner about the central opening. The plurality of blades may be connected to or integral with the hub section. The shroud may be connected to or integral with the hub section and the plurality of blades. The plurality of holes may be either through holes or partially drilled holes. A bottom of some or all of the partially drilled holes may be flat, conical, or rounded. Some or all of the partially drilled holes may have one or more bleed holes that may permit quenching material to flow therethrough and prevent the quenching material from stagnating therein.
Abstract:
An apparatus and method for protecting an inner radial surface of a radial member of a turbomachine from corrosion are provided. The method may include shaping the inner radial surface of the radial member and a corresponding outer radial surface of a corrosion-resistant liner. The method may also include heating the radial member to increase a diameter of the inner radial surface of the radial member, and inserting at least a portion of the corrosion-resistant liner into the radial member. The method may further include attaching the corrosion-resistant liner to the inner radial surface of the radial member to thereby protect the inner radial surface of the radial member of the turbomachine from corrosion.
Abstract:
A method for protecting a turbomachine from corrosion may include creating a first sand mold in a drag of a casting flask, coupling a cope of the casting flask to the drag, removing the runner pin and the at least one riser pin from the cope to expose a runner and at least one riser, respectively, and pouring a molten first material in the runner to cast a first component of the turbomachine. The method may further include removing the first sand mold, creating a second sand mold utilizing the first component in the drag, coupling the cope to the drag, removing the runner pin and the at least one riser pin from the cope to expose a runner and at least one riser, respectively, and pouring a molten second material in the runner to cast a second component of the turbomachine integral with the first component.
Abstract:
An impeller may include a hub section, a plurality of blades, and a shroud. The hub section may be mounted on a rotatable shaft. The hub section may define a central opening for the rotatable shaft to extend therethrough and may define a plurality of holes disposed in a circular manner about the central opening. The plurality of blades may be connected to or integral with the hub section. The shroud may be connected to or integral with the hub section and the plurality of blades. The plurality of holes may be either through holes or partially drilled holes. A bottom of some or all of the partially drilled holes may be flat, conical, or rounded. Some or all of the partially drilled holes may have one or more bleed holes that may permit quenching material to flow therethrough and prevent the quenching material from stagnating therein.
Abstract:
An acoustic attenuator for a turbomachine and methodology for additively manufacturing the acoustic attenuator are provided. The acoustic attenuator includes an annular body (202) having an outer surface (204) and an inner surface (206). The inner surface of the annular body may define a bore (208) extending along a longitudinal axis (209) of the acoustic attenuator between a first end and a second end of the acoustic attenuator. The annular body may be formed by a plurality of axially-successive cross-sectional layers (e.g., 632, 634, 636) unitized between the first end and the second end of the acoustic attenuator. The plurality of axially-successive cross-sectional layers may be transversely disposed relative to the longitudinal axis of the acoustic attenuator. At least some axially-successive cross-sectional layers of the plurality of axially-successive cross-sectional layers (e.g., 632, 634, 636) defining a pocket (214) disposed between the outer surface and the inner surface of the annular body. At least a segment of a periphery of the pocket comprises two sides (1452, 1454) arranged to join at a common end point to form an apex (1460) of the pocket.