Abstract:
A ceramic-wound-capacitor includes a first-electrically-conductive-layer, a dielectric-layer, a second-electrically-conductive-layer, and a protective-coating. The dielectric-layer is formed of lead-lanthanum-zirconium-titanate (PLZT). The protective-coating has a thickness of less than ten micrometers (10 μm) and provides electrical isolation between the first-electrically-conductive-layer and the second-electrically-conductive-layer of the ceramic-wound-capacitor. A method for fabricating the ceramic-wound-capacitor includes the steps of feeding a carrier-strip, depositing a sacrificial layer, depositing a first-electrically-conductive-layer, depositing a dielectric-layer, and depositing a second-electrically-conductive-layer to form an arrangement coupled to the carrier-strip by the sacrificial-layer, separating the arrangement from the carrier-strip and sacrificial-layer, creating an exposed-surface of the first-electrically-conductive-layer, applying a protective-coating to the exposed-surface of the first-electrically-conductive-layer, winding the arrangement with the protective-coating to form a ceramic-wound-capacitor, where the protective-coating is in direct contact with the first-electrically-conductive-layer and the second-electrically-conductive-layer of the ceramic-wound-capacitor.
Abstract:
A circuit-board-assembly includes a printed-circuit-board, an integrated-circuit-die, a ball-grid-array, a barrier-material, and an adhesive-material. The printed-circuit-board includes a mounting-surface that defines a plurality of contact-pads and a continuous-trace that interconnects a selected-group of the contact-pads. The integrated-circuit-die includes an electrical-circuit having a plurality of solder-pads. The ball-grid-array includes a plurality of solder-balls interposed between the contact-pads and the solder-pads. The plurality of solder-balls establish electrical communication between the electrical-circuit and the contact-pads. The barrier-material is located between a string of solder-balls that are attached to the selected-group of the contact-pads to create a barrier. The barrier segregates an underfill-region from a non-underfill-region between the printed-circuit-board and the integrated-circuit-die. The barrier is in direct-contact with the string of the solder-balls, the integrated-circuit-die, and the continuous-trace. The adhesive-material is in direct contact with a portion of the underfill-region and the barrier prevents the adhesive-material from encroaching upon the non-underfill-region.
Abstract:
A system for separating carbon dioxide gas from internal combustion engine exhaust and an electricity generating heat exchanger for the system. The system includes a scrubber tank containing a carbon dioxide absorbent fluid and configured to bubble exhaust gas from the heat exchanger through the carbon dioxide absorbent fluid, whereby carbon dioxide gas is absorbed by the carbon dioxide absorbent fluid. A carbon dioxide storage means stores the carbon dioxide released in a heat exchanger. The heat exchanger cools the exhaust gas emitted by the internal combustion engine, and includes a thermal electric generator (TEG) configured to couple thermally the exhaust gas chamber to the absorber fluid chamber in a manner effective to heat the CO2 absorbent fluid by heat from the engine exhaust to release CO2 gas from the CO2 absorbent fluid and generate electricity in response to a temperature difference therebetween.
Abstract:
A carbon dioxide storage means stores the carbon dioxide released in a heat exchanger. The heat exchanger cools the exhaust gas emitted by the internal combustion engine, and includes a thermal electric generator (TEG) configured to couple thermally the exhaust gas chamber to the absorber fluid chamber in a manner effective to heat the CO2 absorbent fluid by heat from the engine exhaust to release CO2 gas from the CO2 absorbent fluid and generate electricity in response to a temperature difference therebetween. The CO2 absorbent fluid is one of: a) an aliphatic di-functional nitrile (e.g. pimelonitrile); and b) an oligomeric poly-acrylonitrile (PAN).
Abstract translation:二氧化碳储存装置存储释放在热交换器中的二氧化碳。 热交换器冷却由内燃机排出的废气,并且包括热发电机(TEG),其被配置为以有效的方式将废气室热耦合到吸收器流体室,以便通过来自 发动机排气以从CO 2吸收剂流体释放CO 2气体并响应于它们之间的温度差发电。 CO 2吸收剂流体是以下之一:a)脂族二官能腈(例如庚二腈); 和b)低聚聚丙烯腈(PAN)。