摘要:
Systems and methods for OFDM channelization are provided that allow for the co-existence of sub-band channels and diversity channels. Methods of defining diversity sub-channels and sub-band sub-channels are provided, and systematic channel definition and labeling schemes are provided.
摘要:
Systems and methods for OFDM channelization are provided that allow for the co-existence of sub-band channels and diversity channels. Methods of defining diversity sub-channels and sub-band sub-channels are provided, and systematic channel definition and labeling schemes are provided.
摘要:
The description herein relates to pilot designs for an Orthogonal Frequency Division Multiplexing (OFDM) based communication system. In the preferred embodiment, the communication system is one operating according to the IEEE 802.16m, or WiMax, standard. In general, an OFDM transmitter operates to insert pilot symbols into a resource of a transmit frame according to a predetermined staggered pilot symbol pattern defining pilot symbol locations within the resource of the transmit frame. The predetermined pilot symbol pattern is defined such that pilot symbols are located at or near time boundaries of the resource, at or near frequency boundaries of the resource, or both. By doing so, when generating a channel estimate for the communication channel between the OFDM transmitter and an OFDM receiver based on the pilot symbols, extrapolations needed to estimate the channel near the boundaries of the resource are optimized, thereby improving overall channel estimation accuracy.
摘要:
Systems and methods for OFDM channelization are provided that allow for the co-existence of sub-band channels and diversity channels. Methods of defining diversity sub-channels and sub-band sub-channels are provided, and systematic channel definition and labeling schemes are provided.
摘要:
Systems and methods for OFDM channelization are provided that allow for the co-existence of sub-band channels and diversity channels. Methods of defining diversity sub-channels and sub-band sub-channels are provided, and systematic channel definition and labeling schemes are provided.
摘要:
The description herein relates to pilot designs for an Orthogonal Frequency Division Multiplexing (OFDM) based communication system. In the preferred embodiment, the communication system is one operating according to the IEEE 802.16m, or WiMax, standard. In general, an OFDM transmitter operates to insert pilot symbols into a resource of a transmit frame according to a predetermined staggered pilot symbol pattern defining pilot symbol locations within the resource of the transmit frame. The predetermined pilot symbol pattern is defined such that pilot symbols are located at or near time boundaries of the resource, at or near frequency boundaries of the resource, or both. By doing so, when generating a channel estimate for the communication channel between the OFDM transmitter and an OFDM receiver based on the pilot symbols, extrapolations needed to estimate the channel near the boundaries of the resource are optimized, thereby improving overall channel estimation accuracy.
摘要:
The description herein relates to pilot designs for an Orthogonal Frequency Division Multiplexing (OFDM) based communication system. In the preferred embodiment, the communication system is one operating according to the IEEE 802.16m, or WiMax, standard. In general, an OFDM transmitter operates to insert pilot symbols into a resource of a transmit frame according to a predetermined staggered pilot symbol pattern defining pilot symbol locations within the resource of the transmit frame. The predetermined pilot symbol pattern is defined such that pilot symbols are located at or near time boundaries of the resource, at or near frequency boundaries of the resource, or both. By doing so, when generating a channel estimate for the communication channel between the OFDM transmitter and an OFDM receiver based on the pilot symbols, extrapolations needed to estimate the channel near the boundaries of the resource are optimized, thereby improving overall channel estimation accuracy.
摘要:
In order to minimize the control signaling overhead associated with transmitting CQI data from mobile stations to base stations in wireless communication networks supporting MU-MIMO, the CQI during MU-MIMO operation is estimated based on SU-MIMO CQI data, mobile station geometry data, and mobile station PMI (Precoding Matrix Index) data. More particularly, the base station maintains and updates a knowledge pool that correlates geometry data and learned impact of interfering precoder data to degradation of CQI values responsive to switching from SU-MIMO operation to MU-MIMO operations. Then, when the base station switches from SU-MIMO operation to MU-MIMO operation, it consults the knowledge pool to predict the degradation in CQI and subtracts them from the known, pre-switching SU-MIMO CQI feedback data for each relevant mobile station to predict the post-switching MU-MIMO CQIs for that mobile station.
摘要:
Methods, base stations and access terminals for uplink signalling are provided. Resource request channel characteristics such as location in time-frequency, sequence, time slot, are assigned to each access terminal to distinguish their resource requests from the resource requests of other access terminals. Access terminals make requests using a resource request on a resource request channel having the assigned characteristics. The base station can then determine which access terminal transmitted the resource request based on the resource request channel characteristics of the resource request channel upon which the resource request was received. The base station then transmits a response to the request which may for example be a new resource allocation, a default allocation or a renewal of a previous allocation.
摘要:
Methods, base stations and access terminals for uplink signalling are provided. Resource request channel characteristics such as location in time-frequency, sequence, time slot, are assigned to each access terminal to distinguish their resource requests from the resource requests of other access terminals. Access terminals make requests using a resource request on a resource request channel having the assigned characteristics. The base station can then determine which access terminal transmitted 0 the resource request based on the resource request channel characteristics of the resource request channel upon which the resource>request was received. The base station then transmits a response to the request which may for example be a new resource allocation, a default allocation or a renewal of a previous allocation.