摘要:
A mask pattern is formed on a semiconductor substrate in which a cell region, a PMOS region, and an NMOS region are defined. Trenches are formed in the cell region, the PMOS region, and the NMOS region. A sidewall oxide layer and a protection layer are formed in the trenches, and a portion of the protection layer in the PMOS region is removed. A first device isolation insulating layer is formed on the substrate, filling the trenches. Portions of the first device isolation insulating layer are removed to expose the mask pattern and the trenches of the cell region and the NMOS region and to leave a portion of the first device isolation insulating layer in the trench in the PMOS region. A liner is formed on the portion of the first device isolation region in the trench in the PMOS region and conforming to sidewalls of the trenches in the cell region and the NMOS region. A second device isolation insulating layer is formed on the substrate, filling the trenches in the cell region and the NMOS region. Portions of the second device isolation insulating layer are removed to expose the mask pattern and to leave portions of the second device isolation insulating layer in the trenches of the cell region and the NMOS region.
摘要:
A mask pattern is formed on a semiconductor substrate in which a cell region, a PMOS region, and an NMOS region are defined. Trenches are formed in the cell region, the PMOS region, and the NMOS region. A sidewall oxide layer and a protection layer are formed in the trenches, and a portion of the protection layer in the PMOS region is removed. A first device isolation insulating layer is formed on the substrate, filling the trenches. Portions of the first device isolation insulating layer are removed to expose the mask pattern and the trenches of the cell region and the NMOS region and to leave a portion of the first device isolation insulating layer in the trench in the PMOS region. A liner is formed on the portion of the first device isolation region in the trench in the PMOS region and conforming to sidewalls of the trenches in the cell region and the NMOS region. A second device isolation insulating layer is formed on the substrate, filling the trenches in the cell region and the NMOS region. Portions of the second device isolation insulating layer are removed to expose the mask pattern and to leave portions of the second device isolation insulating layer in the trenches of the cell region and the NMOS region.
摘要:
A semiconductor device is manufactured by forming trenches in a substrate and selectively performing Plasma Ion Immersion Implantation and Deposition (PIIID) on a subset of the trenches in the substrate. The PIIID may be performed on only a portion of a surface of at least one of the trenches in the substrate. Semiconductor devices can include a semiconductor substrate having first, second and third trenches therein, and an oxide liner layer that fully lines the first trenches, that does not line the second trenches and that partially lines the third trenches.
摘要:
Methods of manufacturing a semiconductor device, which can reduce hot electron induced punchthrough (HEIP) and/or improve the operating characteristics of the device include selectively forming an oxynitride layer in a device isolation layer according to the characteristics of transistors isolated by the device isolation layer. The methods include forming first trenches and second trenches on a substrate, forming an oxide layer on the surfaces of the first trenches and the second trenches, selectively forming an oxynitride layer on the second trenches by using plasma ion immersion implantation (PIII), and forming a buried insulating layer in the first trenches and the second trenches. The buried insulating layer may be planarized to form a first device isolation layer in the first trenches and a second device isolation layer in the second trenches.
摘要:
Methods of manufacturing a semiconductor device, which can reduce hot electron induced punchthrough (HEIP) and/or improve the operating characteristics of the device include selectively forming an oxynitride layer in a device isolation layer according to the characteristics of transistors isolated by the device isolation layer. The methods include forming first trenches and second trenches on a substrate, forming an oxide layer on the surfaces of the first trenches and the second trenches, selectively forming an oxynitride layer on the second trenches by using plasma ion immersion implantation (PIII), and forming a buried insulating layer in the first trenches and the second trenches. The buried insulating layer may be planarized to form a first device isolation layer in the first trenches and a second device isolation layer in the second trenches.
摘要:
Provided are semiconductor devices including a semiconductor substrate, an insulating layer including a contact hole through which the semiconductor substrate is exposed, and a polysilicon layer filling the contact hole. The polysilicon layer is doped with impurities and includes an impurity-diffusion prevention layer. In the semiconductor devices, the impurities included in the polysilicon layer do not diffuse into the insulating layer and the semiconductor substrate due to the impurity-diffusion prevention layers.
摘要:
Provided are semiconductor devices including a semiconductor substrate, an insulating layer including a contact hole through which the semiconductor substrate is exposed, and a polysilicon layer filling the contact hole. The polysilicon layer is doped with impurities and includes an impurity-diffusion prevention layer. In the semiconductor devices, the impurities included in the polysilicon layer do not diffuse into the insulating layer and the semiconductor substrate due to the impurity-diffusion prevention layers.
摘要:
An isolation region is formed on a substrate by forming spaced apart mesas on the substrate. A first insulation region is then formed on the substrate and second insulation regions are formed on the mesas, the first insulation region being disposed between and spaced apart from a respective one of the mesas, a respective one of the second insulation regions capping a respective one of the mesas. Preferably, the first and second insulation regions are formed by forming sidewall spacers adjacent sidewall portions of the mesas and oxidizing portions of the mesas opposite the substrate and a portion of the substrate disposed between the sidewall spacers. Spaced apart trenches are formed in the substrate on opposite sides of the first insulation region, a respective one of the trenches being disposed between the first insulation region and a respective one of the mesas, preferably by removing the sidewall spacers and underlying portions of the substrate. An insulating layer is formed on the substrate, filling the trenches and covering the first insulation region, and the substrate is planarized to remove portions of the insulating layer and the second insulation regions and thereby expose underlying portions of the mesas and leave a third insulation region spanning the trenches.
摘要:
A method for forming a trench type isolation film comprises filling a trench with a composite film, flattening the resultant, and annealing the flattened resultant before a gate oxide film is formed. The annealing diffuses out any contaminant existing in an area near and/or contacting the trench on a surface between a semiconductor substrate and a pad oxide film. Therefore, it is possible to prevent the portion of the gate oxide film which is near the trench from becoming thinner than other portions. Accordingly, it is possible to prevent the characteristic of the gate oxide film from deteriorating. In particular, it is possible to prevent a break down voltage from being lowered.
摘要:
A trench isolation method is provided. In the trench isolation method, a pad oxide film, an oxidative film and an etching mask film are formed on a semiconductor substrate in sequence, and then a trench is formed in a field region of the semiconductor substrate. A oxide film is formed at the inner wall of the trench and the side walls of the oxidative film by oxidizing the semiconductor substrate. After filling the trench with a dielectric material, the pad oxide film, oxidative film and etching mask film formed in the active region are removed.