摘要:
Semiconductor devices may include a semiconductor substrate with a first semiconductor fin aligned end-to-end with a second semiconductor with a recess between facing ends of the first and second semiconductor fins. A first insulator pattern is formed adjacent sidewalls of the first and second semiconductor fins and a second insulator pattern is formed within the first recess. The second insulator pattern may have a top surface higher than a top surface of the first insulator pattern, such as to the height of the top surface of the fins (or higher or lower). First and second gates extend along sidewalls and a top surface of the first semiconductor fin. A dummy gate electrode may be formed on the top surface of the second insulator. Methods for manufacture of the same and modifications are also disclosed.
摘要:
A nonvolatile memory device may include: a tunnel insulating layer on a semiconductor substrate; a charge storage layer on the tunnel insulating layer; a blocking insulating layer on the charge storage layer; and a control gate electrode on the blocking insulating layer. The tunnel insulating layer may include a first tunnel insulating layer and a second tunnel insulating layer. The first tunnel insulating layer and the second tunnel insulating layer may be sequentially stacked on the semiconductor substrate. The second tunnel insulating layer may have a larger band gap than the first tunnel insulating layer. A method for fabricating a nonvolatile memory device may include: forming a tunnel insulating layer on a semiconductor substrate; forming a charge storage layer on the tunnel insulating layer; forming a blocking insulating layer on the charge storage layer; and forming a control gate electrode on the blocking insulating layer.
摘要:
Methods of fabricating metal-oxide-semiconductor (MOS) transistors having elevated source/drain regions are provided. The MOS transistors formed by these methods may include a gate pattern formed to cross over a predetermined region of a substrate. Recessed regions are provided in the substrate adjacent to the gate pattern. Epitaxial layers are provided on bottom surfaces of the recessed regions. High concentration impurity regions are provided in the epitaxial layers. The recessed regions may be formed using a chemical dry etching techniques.
摘要:
Methods of manufacturing semiconductor devices may include forming a first layer on a first active region (P-channel FET), forming a second layer on a second active region (N-channel FET), the first and second layers including a silicon germanium (SiGe) epitaxial layer sequentially stacked on a silicon (Si) epitaxial layer, forming a first contact hole in an interlayer insulating film including a first lower region exposing the SiGe epitaxial layer of the first layer, forming a second contact hole in the interlayer insulating film including a second lower region penetrating through the SiGe epitaxial layer of the second layer and exposing the Si epitaxial layer of the second layer, forming a first metal silicide film including germanium (Ge) in the first lower region, forming a second metal silicide film not including Ge in the second lower region simultaneously with the forming of the first metal silicide film.
摘要:
A nonvolatile memory device may include: a tunnel insulating layer on a semiconductor substrate; a charge storage layer on the tunnel insulating layer; a blocking insulating layer on the charge storage layer; and a control gate electrode on the blocking insulating layer. The tunnel insulating layer may include a first tunnel insulating layer and a second tunnel insulating layer. The first tunnel insulating layer and the second tunnel insulating layer may be sequentially stacked on the semiconductor substrate. The second tunnel insulating layer may have a larger band gap than the first tunnel insulating layer. A method for fabricating a nonvolatile memory device may include: forming a tunnel insulating layer on a semiconductor substrate; forming a charge storage layer on the tunnel insulating layer; forming a blocking insulating layer on the charge storage layer; and forming a control gate electrode on the blocking insulating layer.
摘要:
A method of fabricating a semiconductor integrated circuit includes forming a first dielectric layer on a semiconductor substrate, patterning the first dielectric layer to form a first patterned dielectric layer, forming a non-single crystal seed layer on the first patterned dielectric layer, removing a portion of the seed layer to form a patterned seed layer, forming a second dielectric layer on the first patterned dielectric layer and the patterned seed layer, removing portions of the second dielectric layer to form a second patterned dielectric layer, irradiating the patterned seed layer to single-crystallize the patterned seed layer, removing portions of the first patterned dielectric layer and the second patterned dielectric layer such that the single-crystallized seed layer protrudes in the vertical direction with respect to the first and/or the second patterned dielectric layer, and forming a gate electrode in contact with the single-crystal active pattern.
摘要:
A microwave oven is provided. A reinforcing part is provided to a multi-hole part for transferring the heat of a heater to a cooking chamber. This prevents deformation of the multi-hole part due to the heat of the heater.
摘要:
Methods of manufacturing a semiconductor device, which can reduce hot electron induced punchthrough (HEIP) and/or improve the operating characteristics of the device include selectively forming an oxynitride layer in a device isolation layer according to the characteristics of transistors isolated by the device isolation layer. The methods include forming first trenches and second trenches on a substrate, forming an oxide layer on the surfaces of the first trenches and the second trenches, selectively forming an oxynitride layer on the second trenches by using plasma ion immersion implantation (PIII), and forming a buried insulating layer in the first trenches and the second trenches. The buried insulating layer may be planarized to form a first device isolation layer in the first trenches and a second device isolation layer in the second trenches.
摘要:
Methods of fabricating metal-oxide-semiconductor (MOS) transistors having elevated source/drain regions are provided. The MOS transistors formed by these methods may include a gate pattern formed to cross over a predetermined region of a substrate. Recessed regions are provided in the substrate adjacent to the gate pattern. Epitaxial layers are provided on bottom surfaces of the recessed regions. High concentration impurity regions are provided in the epitaxial layers. The recessed regions may be formed using a chemical dry etching techniques.
摘要:
A field effect transistor includes a vertical fin-shaped semiconductor active region having an upper surface and a pair of opposing sidewalls on a substrate, and an insulated gate electrode on the upper surface and opposing sidewalls of the fin-shaped active region. The insulated gate electrode includes a capping gate insulation layer having a thickness sufficient to preclude formation of an inversion-layer channel along the upper surface of the fin-shaped active region when the transistor is disposed in a forward on-state mode of operation. Related fabrication methods are also discussed.