Abstract:
A component monitoring system structured to monitor circuit breaker assembly component characteristics is provided. The component monitoring system includes a record assembly, a number of vibration sensor assemblies, a comparison assembly, and an output assembly. The record assembly includes selected nominal data for a selected circuit breaker component. The vibration sensor assembly is structured to measure a number of actual component characteristics for a substantial portion of the circuit breaker assembly and to transmit actual component characteristic output data. The comparison assembly is structured to receive an electronic signal from said record assembly and said sensor assemblies, to compare each sensor assembly actual component characteristic output data to said selected nominal data and to provide an indication signal as to whether said sensor assembly output data is acceptable when compared to the selected nominal data. The output assembly includes a communication assembly and an output device.
Abstract:
A failure prediction assembly is structured to monitor circuit breaker assembly sub-assemblies and their component's characteristics. The failure prediction assembly includes a sensor supported D-shaft and a sensor assembly including a housing and a number of sensors. The sensor assembly housing defines a D-shaft passage. A control unit is in electronic communication with the sensor assembly. The sensor assembly housing is coupled to the circuit breaker sidewalls with the sensor assembly housing D-shaft passage aligned with the circuit breaker sidewall D-shaft passages. The sensor supported D-shaft is rotatably coupled to the sensor assembly with the sensor supported D-shaft disposed through said sensor assembly housing D-shaft passage.
Abstract:
A cooling system for a circuit breaker is provided. The cooling system includes a temperature management unit, a power assembly, and a heat dissipating assembly. The temperature management unit is structured to detect the temperature at one of the circuit breaker or the conductor assembly. The power assembly is structured to harvest energy from the circuit breaker. The heat dissipating assembly includes a number of convection units, each heat convection unit is disposed immediately adjacent a number of the heat exchanging element.
Abstract:
A failure prediction assembly is structured to monitor circuit breaker assembly sub-assemblies and their component's characteristics. The failure prediction assembly includes a sensor supported D-shaft and a sensor assembly including a housing and a number of sensors. The sensor assembly housing defines a D-shaft passage. A control unit is in electronic communication with the sensor assembly. The sensor assembly housing is coupled to the circuit breaker sidewalls with the sensor assembly housing D-shaft passage aligned with the circuit breaker sidewall D-shaft passages. The sensor supported D-shaft is rotatably coupled to the sensor assembly with the sensor supported D-shaft disposed through said sensor assembly housing D-shaft passage.
Abstract:
An electrode assembly for a circuit breaker is provided. The electrode assembly includes a conductive assembly and a heat transfer assembly. The conductive assembly includes a stem portion and a contact portion. The heat transfer assembly includes a number of elongated bodies, a first heat transfer surface, and a second heat transfer surface. The first heat transfer surface is disposed on the conductive assembly. Each heat transfer assembly body includes a second heat transfer surface. Each heat transfer assembly body is coupled to the conductive assembly with the first heat transfer surface coupled to a number of second heat transfer surfaces.
Abstract:
A component monitoring system structured to monitor circuit breaker assembly component characteristics is provided. The component monitoring system includes a record assembly, a number of impulse sensor assemblies, a comparison assembly, and an output assembly. The record assembly includes selected nominal data for a selected circuit breaker component. The impulse sensor assemblies are structured to measure a number of actual component characteristics for a substantial portion of the circuit breaker assembly and to transmit actual component characteristic output data. The comparison assembly is structured to receive an electronic signal from the record assembly and the impulse sensor assemblies, to compare each impulse sensor assembly actual component characteristic output data to the selected nominal data and to provide an indication signal as to whether the impulse sensor assembly output data is acceptable when compared to the selected nominal data. The output assembly includes a communication assembly and an output device.
Abstract:
A component monitoring system structured to monitor circuit breaker assembly operating mechanism component characteristics is provided. The component monitoring system includes a record assembly, at least one sensor assembly and a comparison assembly. The record assembly includes selected nominal data for a selected circuit breaker component. The least one sensor assembly is structured to measure a number of actual component characteristics of a selected circuit breaker component and to transmit actual component characteristic output data. The comparison assembly is structured to compare the sensor assembly actual component characteristic output data to the selected nominal data and to provide an indication of whether the sensor assembly output data is acceptable when compared to the selected nominal data. The at least one sensor assembly is in electronic communication with the comparison assembly.
Abstract:
A monitoring latch assembly structured to monitor circuit breaker assembly operating mechanism component characteristics is provided. The monitoring latch assembly includes a latch member and a sensor assembly. The latch member includes a body. The latch member body defines a pocket. The sensor assembly is disposed in the latch member body pocket.
Abstract:
A component monitoring system structured to monitor circuit breaker assembly component characteristics is provided. The component monitoring system includes a record assembly, a number of impulse sensor assemblies, a comparison assembly, and an output assembly. The record assembly includes selected nominal data for a selected circuit breaker component. The impulse sensor assemblies are structured to measure a number of actual component characteristics for a substantial portion of the circuit breaker assembly and to transmit actual component characteristic output data. The comparison assembly is structured to receive an electronic signal from the record assembly and the impulse sensor assemblies, to compare each impulse sensor assembly actual component characteristic output data to the selected nominal data and to provide an indication signal as to whether the impulse sensor assembly output data is acceptable when compared to the selected nominal data. The output assembly includes a communication assembly and an output device.
Abstract:
A torque regulator assembly is for a stored energy assembly of an electrical switching apparatus. The torque regulator assembly includes: a drive assembly including a gear and a transfer assembly disposed on the gear, the gear being structured to be cooperable with at least one charging mechanism of the stored energy assembly; and a shaft extending through the gear. The drive assembly is structured to move between a driving position and a non-driving position. In the driving position, the gear is cooperable with the transfer assembly to drive the shaft. In the non-driving position, the gear rotates independently with respect to the transfer assembly.