摘要:
One embodiment of the present invention is a technique to invalidate entries in a translation lookaside buffer (TLB). A TLB in a processor has a plurality of TLB entries. Each TLB entry is associated with a virtual machine extension (VMX) tag word indicating if the associated TLB entry is invalidated according to a processor mode when an invalidation operation is performed. The processor mode is one of execution in a virtual machine (VM) and execution not in a virtual machine. The invalidation operation belongs to a non-empty set of invalidation operations composed of a union of (1) a possibly empty set of operations that invalidate a variable number of TLB entries, (2) a possibly empty set of operations that invalidate exactly one TLB entry, (3) a possibly empty set of operations that invalidate the plurality of TLB entries, (4) a possibly empty set of operations that enable and disable use of virtual memory, and (5) a possibly empty set of operations that configure physical address size, page size or other virtual memory system behavior in a manner that changes the manner in which a physical machine interprets the TLB entries.
摘要:
In one embodiment, a method includes transitioning control to a virtual machine (VM) from a virtual machine monitor (VMM), determining that a VMM timer indicator is set to an enabling value, and identifying a VMM timer value configured by the VMM. The method further includes periodically comparing a current value of a timing source with the VMM timer value, generating an internal event if the current value of the timing source has reached the VMM timer value, and transitioning control to the VMM in response to the internal event without incurring an event handling procedure in any one of the VMM and the VM.
摘要:
One embodiment of the present invention is a technique to invalidate entries in a translation lookaside buffer (TLB). A TLB in a processor has a plurality of TLB entries. Each TLB entry is associated with a virtual machine extension (VMX) tag word indicating if the associated TLB entry is invalidated according to a processor mode when an invalidation operation is performed. The processor mode is one of execution in a virtual machine (VM) and execution not in a virtual machine. The invalidation operation belongs to a non-empty set of invalidation operations composed of a union of (1) a possibly empty set of operations that invalidate a variable number of TLB entries, (2) a possibly empty set of operations that invalidate exactly one TLB entry, (3) a possibly empty set of operations that invalidate the plurality of TLB entries, (4) a possibly empty set of operations that enable and disable use of virtual memory, and (5) a possibly empty set of operations that configure physical address size, page size or other virtual memory system behavior in a manner that changes the manner in which a physical machine interprets the TLB entries.
摘要:
One embodiment of the present invention is a technique to invalidate entries in a translation lookaside buffer (TLB). A TLB in a processor has a plurality of TLB entries. Each TLB entry is associated with a virtual machine extension (VMX) tag word indicating if the associated TLB entry is invalidated according to a processor mode when an invalidation operation is performed. The processor mode is one of execution in a virtual machine (VM) and execution not in a virtual machine. The invalidation operation belongs to a non-empty set of invalidation operations composed of a union of (1) a possibly empty set of operations that invalidate a variable number of TLB entries, (2) a possibly empty set of operations that invalidate exactly one TLB entry, (3) a possibly empty set of operations that invalidate the plurality of TLB entries, (4) a possibly empty set of operations that enable and disable use of virtual memory, and (5) a possibly empty set of operations that configure physical address size, page size or other virtual memory system behavior in a manner that changes the manner in which a physical machine interprets the TLB entries.
摘要:
One embodiment of the present invention is a technique to invalidate entries in a translation lookaside buffer (TLB). A TLB in a processor has a plurality of TLB entries. Each TLB entry is associated with a virtual machine extension (VMX) tag word indicating if the associated TLB entry is invalidated according to a processor mode when an invalidation operation is performed. The processor mode is one of execution in a virtual machine (VM) and execution not in a virtual machine. The invalidation operation belongs to a non-empty set of invalidation operations composed of a union of (1) a possibly empty set of operations that invalidate a variable number of TLB entries, (2) a possibly empty set of operations that invalidate exactly one TLB entry, (3) a possibly empty set of operations that invalidate the plurality of TLB entries, (4) a possibly empty set of operations that enable and disable use of virtual memory, and (5) a possibly empty set of operations that configure physical address size, page size or other virtual memory system behavior in a manner that changes the manner in which a physical machine interprets the TLB entries.
摘要:
In one embodiment, a method includes transitioning control to a virtual machine (VM) from a virtual machine monitor (VMM), determining that a VMM timer indicator is set to an enabling value, and identifying a VMM timer value configured by the VMM. The method further includes periodically comparing a current value of a timing source with the VMM timer value, generating an internal event if the current value of the timing source has reached the VMM timer value, and transitioning control to the VMM in response to the internal event without incurring an event handling procedure in any one of the VMM and the VM.
摘要:
An apparatus and method for unilaterally loading a secure operating system within a multiprocessor environment are described. The method includes disregarding a received load secure region instruction when a currently active load secure region operation is detected. Otherwise, a memory protection element is directed, in response to the received load secure region instruction, to form a secure memory environment. Once directed, unauthorized read/write access to one or more protected memory regions are prohibited. Finally, a cryptographic hash value of the one or more protected memory regions is stored within a digest information repository as a secure software identification value. Once stored, outside agents may request access to a digitally signed software identification value to establish security verification of secure software within the secure memory environment.
摘要:
A method and an apparatus are used to efficiently translate memory addresses. The translation scheme yields a translated address, a memory type for the translated address, and a fault bit for the translation.
摘要:
An apparatus and method for unilaterally loading a secure operating system within a multiprocessor environment are described. The method includes disregarding a received load secure region instruction when a currently active load secure region operation is detected. Otherwise, a memory protection element is directed, in response to the received load secure region instruction, to form a secure memory environment. Once directed, unauthorized read/write access to one or more protected memory regions are prohibited. Finally, a cryptographic hash value of the one or more protected memory regions is stored within a digest information repository as a secure software identification value. Once stored, outside agents may request access to a digitally signed software identification value to establish security verification of secure software within the secure memory environment.
摘要:
An apparatus and method for unilaterally loading a secure operating system within a multiprocessor environment are described. The method includes disregarding a received load secure region instruction when a currently active load secure region operation is detected. Otherwise, a memory protection element is directed, in response to the received load secure region instruction, to form a secure memory environment. Once directed, unauthorized read/write access to one or more protected memory regions are prohibited. Finally, a cryptographic hash value of the one or more protected memory regions is stored within a digest information repository as a secure software identification value. Once stored, outside agents may request access to a digitally signed software identification value in order to establish security verification of secure software within the secure memory environment.