Abstract:
Unsaturated and hydrogenated polyalpha-olefin products can be made with a high selectivity toward vinylidenes and tri-substituted vinylenes combined, a high selectivity toward vinylidenes, and a low selectivity toward 1,2-di-substituted vinylenes by using a catalyst system comprising a metallocene compound having the following structure in the polymerization reaction:
Abstract:
This invention relates to a supported catalyst system and process for use thereof. In particular, the catalyst system includes bridged hafnium metallocene compound, an unbridged metallocene compound, a support material and an activator. The catalyst system may be used for preparing polyolefins.
Abstract:
This invention relates to a process to polymerize olefins comprising contacting, in solution phase at a temperature of 60° C. to 200° C., ethylene, and at least one olefin comonomer with a catalyst system comprising a non-coordinating anion activator and a metallocene catalyst compound, preferably represented by the formula: and 2) obtaining ethylene polymer having an Mw greater than 100,000 g/mol, preferably greater tha 400,000 g/mol.
Abstract:
Polymerization processes to produce polyolefin polymers, for example, polyethylene polymers, from catalyst systems comprising one or more olefin polymerization catalysts and at least one activator are provided. The polyolefin polymers may have a Broad Orthogonal Composition Distribution (BOCD).
Abstract:
An atactic polypropylene comb-block polyolefin comprising two blocks including a polyolefin backbone and atactic polypropylene combs pendant to the backbone having a weight average molecular weight of at least 8000 g/mole and a crystallinity of less than 20%, where the atactic polypropylene comb-block polyolefin has comb number of at least 2. The atactic polypropylene comb-block polyolefin is made by contacting at a temperature within a range from 20 to 70° C. propylene with a first metallocene precursor to form vinyl-terminated atactic polypropylene to form vinyl-terminated atactic polypropylene, then contacting at a temperature within a range from 40 to 150° C. the vinyl-terminated atactic polypropylene with ethylene, propylene, or both and a second metallocene precursor to form the backbone.
Abstract:
In at least one embodiment, a catalyst compound is represented by Formula (I): where M is a group 4 metal. Each of R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, and R14 is independently hydrogen, or a linear or branched C1-C50 substituted or unsubstituted hydrocarbyl, halocarbyl or silylcarbyl. At least one of R1 and R3 is not hydrogen. Each X is independently a halide or C1-C50 substituted or unsubstituted hydrocarbyl, hydride, amide, alkoxide, sulfide, phosphide, halide, diene, amine, phosphine, ether, or a combination thereof, or two Xs are joined together to form a metallocycle ring, or two Xs are joined to form a chelating ligand, a diene ligand, or an alkylidene.
Abstract:
Provided is an ethylene copolymer having 40 wt. % to 70 wt. % of units derived from ethylene and at least 30 wt. % of units derived from at least one α-olefin having 3 to 20 carbon atoms and has the following properties: (a) a weight-average molecular weight (Mw), as measured by GPC, in the range of about 50,000 to about 200,000 g/mol; (b) a melting point (Tm) in ° C., as measured by DSC, that satisfies the relation: Tm>3.4×E−180 where E is the weight % of units derived from ethylene in the copolymer; (c) a ratio of Mw/Mn of about 1.8 to about 2.5; (d) a content of Group 4 metals of no more than 5 ppm; and (e) a ratio of wt ppm Group 4 metals/wt ppm Group 5 metals of at least 3. Also provided are methods for making an ethylene copolymer and compositions comprising an ethylene copolymer.
Abstract:
Disclosed herein are certain propylene-based metal polymerals and their use in modifying surfaces, and, in general, metal polymerals used in modifying surfaces. In one aspect is a metal polymeryl comprising compounds having the general formula: MR3−nR′n; wherein each R group is a hydrogen or C1 to C10 or C20 alkyl, and each R′ group is selected from propylene-based polymers having an Mn of at least 300 g/mole; n is 1, 2, or 3; and M is a Group 12 or 13 metal, preferably aluminum or zinc; wherein the first portion of the R′ group bound to the metal M is a —CH2CH2— group, and the terminal portion of the R′ group is isobutyl. Surfaces that are modified or “solubilized” include particles of silica or alumina, glass, metal, clay and other hydroxyl-containing materials of all sizes.
Abstract:
This invention relates to a homogenous process for making a vinyl terminated propylene polymer, wherein the process comprises: contacting, propylene, under polymerization conditions, with a catalyst system comprising an activator and at least one metallocene compound, where the metallocene compound is represented by the formula: where: M is hafnium or zirconium; each X is a group bound to M as described herein; each R1 and R2 is, independently, a C1 to C10 alkyl group; each R3 is, independently, hydrogen; each R4, R5, and R6, is, independently, hydrogen or a substituted or unsubstituted hydrocarbyl group, a heteroatom or heteroatom containing group; T is a bridging group as described herein; and further provided that any of adjacent R4, R5, and R6 groups may form a fused ring or multicenter fused ring system where the rings may be aromatic, partially saturated or saturated, wherein the activator comprises a non-coordinating anion.