摘要:
An article comprising a QC-DFB laser is disclosed. In the QC-DFB laser, an overlying grating structure achieves relatively strong coupling of the guided mode to the grating, and is thus highly effective in inducing single-mode operation even under cw operating conditions. The grating structure includes grooves etched in a plasmon-enhanced confinement layer (PECL) disposed adjacent and in contact with an upper metallic electrode. The grating structure and the PECL are designed such that in the grooves, the laser mode travelling in the waveguide can couple efficiently to the surface-plasmon at the electrode interface. This results in strong modulation of the laser mode, leading to strong modulation of, inter alia, the effective refractive index.
摘要:
A semiconductor laser comprises an active region (12) which, in response to a pumping energy applied thereto, can produce a stimulated emission of radiation with a central wavelength (λ) in the far infrared region, and a confinement region (16, 18, 22) suitable for confining the radiation in the active region (12), and comprising at least one interface (16a, 16b, 22a) between adjacent layers that is capable of supporting surface plasmon modes generated by an interaction of the interface with the radiation. The confinement region (16, 18, 22) comprises a wave-guide layer (16) which is delimited on opposite sides by a first interface and by a second interface (16a, 16b). The guide layer (16) is doped in a manner such that the first and second interfaces (16a, 16b) are capable of supporting the plasmon modes, respectively, and is of a thickness (d) such as to bring about the accumulation of the plasmon modes in proximity to the first and second interfaces (16a, 16b), outside the layer (16), and substantially a suppression of the plasmon modes, inside the layer.
摘要:
A semiconductor laser comprises an active region (12) which, in response to a pumping energy applied thereto, can produce a stimulated emission of radiation with a central wavelength (λ) in the far infrared region, and a confinement region (16, 18, 22) suitable for confining the radiation in the active region (12), and comprising at least one interface (16a, 16b, 22a) between adjacent layers that is capable of supporting surface plasmon modes generated by an interaction of the interface with the radiation. The confinement region (16, 18, 22) comprises a wave-guide layer (16) which is delimited on opposite sides by a first interface and by a second interface (16a, 16b). The guide layer (16) is doped in a manner such that the first and second interfaces (16a, 16b) are capable of supporting the plasmon modes, respectively, and is of a thickness (d) such as to bring about the accumulation of the plasmon modes in proximity to the first and second interfaces (16a, 16b), outside the layer (16), and substantially a suppression of the plasmon modes, inside the layer.