Abstract:
An electronic automatically decoupling hub assembly. The decoupling hub assembly has an axle and a hub shell rotationally positioned about the axle. A controller provides automatic activation/deactivation signals to an inductor. The decoupling hub assembly has a bearing rotationally positioned about the axle and a cassette body assembly, having a plurality of teeth, rotationally positioned about the bearing. One or more pawls are provided to engage with at least some of the teeth of the cassette body assembly and a seal is used to contain the pawls within the decoupling hub assembly. A cassette body assembly is coupled with the ratchet ring and an end cap is used to prevent a contaminant from entering into the decoupling hub assembly.
Abstract:
A connected component platform (CCP) is disclosed. The CCP receives information about at least one connected component on a vehicle and sensor derived performance information for the vehicle. The CCP develops a suspension setup recommendation for the vehicle based on the information about the at least one connected component and the sensor derived performance information. The suspension setup recommendation for the vehicle is presented on a display.
Abstract:
A method and apparatus for an adjustable suspension system for a vehicle comprises at least one strut. In one embodiment, the stanchion (or slider) is non-uniform with a major and minor circumferential stiffness and is adjustable relative to a fore and aft axis of the vehicle in order to provide a differing amount of stiffness relative thereto. In another embodiment, a portion of the stanchion is circular and a reinforcement is annularly disposed therearound with axial retention formations, The reinforcement has a non-uniform circumferential characteristic and is rotatable relative to the fore/aft axis of the vehicle.
Abstract:
A method and apparatus for an adjustable suspension system for a vehicle comprises at least one strut. In one embodiment, the stanchion (or slider) is non-uniform with a major and minor circumferential stiffness and is adjustable relative to a fore and aft axis of the vehicle in order to provide a differing amount of stiffness relative thereto. In another embodiment, a portion of the stanchion is circular and a reinforcement is annularly disposed therearound with axial retention formations, The reinforcement has a non-uniform circumferential characteristic and is rotatable relative to the fore/aft axis of the vehicle
Abstract:
An air bleed system for a suspension fork or shock absorber includes: a fluid passage between an interior of the suspension and an exterior of the suspension; and an automatic air bleed assembly having a material with oleophobic and hydrophobic properties to allow the fluid passage to remain open while limiting the introduction of external fluid into the interior of the suspension and limiting the escape of internal fluid out of the interior of the suspension.
Abstract:
An air spring assembly is disclosed. The air spring assembly includes a piston assembly including a piston, at least one compliant member, a seal configured to provide an air tight seal between the piston and a wall of an air chamber, and a fastener configured to couple the piston with a shaft.
Abstract:
An active suspension system with body wearable device integration is disclosed. The system includes a prosthetic having a shock assembly with at least one active valve and a controller communicatively coupled with the at least one active valve of the shock assembly, the controller configured to communicate damping adjustment information to the at least one active valve of the shock assembly, the damping adjustment information used by said at least one active valve to modify a damping characteristic of the shock assembly.
Abstract:
A connected component platform (CCP) is disclosed. The CCP receives information about at least one connected component on a vehicle and sensor derived performance information for the vehicle. The CCP develops a suspension setup recommendation for the vehicle based on the information about the at least one connected component and the sensor derived performance information. The suspension setup recommendation for the vehicle is presented on a display.
Abstract:
An electronic automatically decoupling hub assembly is disclosed herein. The decoupling hub assembly has an axle and a hub shell rotationally positioned about the axle. A controller provides automatic activation/deactivation signals to an inductor. The decoupling hub assembly has a bearing rotationally positioned about the axle and a cassette body assembly, having a plurality of teeth, rotationally positioned about the bearing. One or more pawls are provided to engage with at least some of the teeth of the cassette body assembly and a seal is used to contain the pawls within the decoupling hub assembly. A cassette body assembly is coupled with the ratchet ring and an end cap is used to prevent a contaminant from entering into the decoupling hub assembly.
Abstract:
A chainring is disclosed. The chainring includes a plurality of teeth about the outer perimeter of the chainring; and a chain retention feature at a root of one or more of the plurality of teeth and traversing at least a portion of a circumference of the chainring, the chain retention feature to align with at least a portion of a roller chain and assist in a retention of the roller chain on the chainring.