Abstract:
Producing welded connections between inner tubes and tube support plates of a tube bundle for a product-to-product shell-and-tube heat exchanger by means of an auxiliary device is described. A production method includes pressing the end face of a tube support plate against the end face of the inner tubes in the direction of the inner tube longitudinal axes during welding operations with a first form fit, which is effective both radially and axially, immovably fixing the number of inner tubes corresponding to the tube layout pattern to each other by a second, detachable form fit of the auxiliary device, making a circumferential round weld orbitally, starting from the plate inner bore and the tube inner bore, in a single pass and continuously from radially inside to radially outside, and detaching and removing the auxiliary device from the welded tube bundle.
Abstract:
Directly heating a protein-enriched milk product occurs by introducing steam, the direct heating taking the form of an infusion or injection method. The described technique significantly extends service time, ensuring a content of non-denatured whey proteins in the treated protein-enriched milk product greater than that obtained in the prior art. The milk product, which is preheated and kept at temperature is indirectly cooled before direct heating by a recuperative cooling step from the preheating temperature to a cool-down temperature with a temperature difference ranging from 5 K to 10 K. The direct heating from the cool-down temperature to the high pasteurization temperature is controlled by direct heating setting parameters which are known per se. Finally, the milk product is cooled by flash cooling from the high pasteurization temperature to a necessarily required exit temperature.
Abstract:
The industrial production of an extract by means of solid-liquid extraction improves the exchange of substances during extraction and allows enhanced dehumidification of a raffinate with residual moisture. The extraction is enhanced during a first dwell time by at least partially flooding a vessel in the form of at least one flow discharged with a secondary solvent or the obtained extract, swirling and keeping in suspension the primary mixture within the vessel by supplying the secondary solvent or the obtained extract via a foot area of the vessel, and/or moving the vessel relative to the extraction container within the obtained extract. The secondary solvent or the extract circulates in the extraction container by a circulation guide incorporating the extraction container from top to bottom relative to the extraction container, and the extract freed from raffinate with residual moisture obtained by dehumidification is supplied to the separated or to be separated extract.
Abstract:
Controlling and/or treating heat-sensitive liquid food products ensures improved control of a filling level in an infuser container. Therefore, a constant dwell time of the product to be heated is reached in the event of product-fouling in the centrifugal pump. The pump is designed such that one part of a volume flow of the product, transported by an impeller wheel, regularly rinses the impeller wheel and the areas of a pump chamber that are directly adjacent to the impeller wheel. A reduction in the volume flow of the centrifugal pump is then counteracted by increasing the initial rotational speed if the reduction is simultaneously associated with a drop in temperature of the product. The increase of the initial rotational speed is carried according to the drop in temperature of the product and/or an increase in the temperature of the steam to constantly maintain at least the temperature of the product.
Abstract:
Controlling the production of an extract using solid-liquid extraction that improves the exchange of material during the extraction process and allows a controlled dehumidification of a raffinate with residual moisture in order to obtain additional valuable extract is described. The steps include providing a first mass in an extraction container, supplying a second mass to the first mass without spatial constraints and distributing and mixing the second mass into and with the first mass, discharging a mixture of the extract and the raffinate from the extraction container, separating the discharged mixture into the raffinate with residual moisture and extracts released from the raffinate with residual moisture, and further treating the raffinate with residual moisture at least such that the residual moisture consisting of the extract is at least partly removed from the raffinate with residual moisture by dehumidification and is supplied to the already separated extract.
Abstract:
A method for treating liquid food products after direct heating comprises a first cooling of the liquid food product occurring on a floor of the infuser vessel up to an outlet opening. A second cooling of the liquid food product occurs in a tubular section connecting directly to the outlet opening. A third cooling of the liquid food product occurs in a housing cover of a pump housing of a centrifugal pump. At least one flushing operation of the pump housing and of an impeller via a rear impeller gap is performed, wherein the at least flushing operation occurs via a front impeller gap located between the housing cover and the impeller. Volume flows of the at least one flushing operation are greater than equalization flows within the pump housing.
Abstract:
Controlling and/or treating heat-sensitive liquid food products ensures improved control of a filling level in an infuser container. Therefore, a constant dwell time of the product to be heated is reached in the event of product-fouling in the centrifugal pump. The pump is designed such that one part of a volume flow of the product, transported by an impeller wheel, regularly rinses the impeller wheel and the areas of a pump chamber that are directly adjacent to the impeller wheel. A reduction in the volume flow of the centrifugal pump is then counteracted by increasing the initial rotational speed if the reduction is simultaneously associated with a drop in temperature of the product. The increase of the initial rotational speed is carried according to the drop in temperature of the product and/or an increase in the temperature of the steam to constantly maintain at least the temperature of the product.
Abstract:
The invention relates to a UHT system for heat treating temperature-sensitive food products, in particular desserts or dessert-like products, comprising a pre-heating zone and a subsequent high-heating zone. The aim of the invention is to achieve accurate and fast temperature adjustment of the food product leaving the pre-heating zone to the temperature conditions at the inlet of the high-heating zone in a UHT system of the generic type, and at the same time, with an equal dwell time for all partial amounts of the food product, to ensure that the food product is treated in a particularly thermally gentle manner and to keep the mechanical loading of the food product as low as possible.
Abstract:
A method for introducing a vaporous heat carrier into a liquid product, in particular a food product or beverage, and more particularly viscous products, for example desserts, sauces or concentrates, includes using the carrier to heat the product to form a germ-free product. An injector for carrying out the method is also described. A reduction in the heat transfer capacity of the injector is prevented over the entire production time. This is achieved in that three physical measurement variables which can be detected during operation of the injector are used as indicators of the formation of product deposits. At least one of said three physical measurement variables is detected, and depending on these variables, an automatically controlled axial movement of the displacement body is carried out such that the heat transfer capacity from the vaporous heat carrier into the liquid product remains the same.
Abstract:
Directly heating a protein-enriched milk product occurs by introducing steam, the direct heating taking the form of an infusion or injection method. The described technique significantly extends service time, ensuring a content of non-denatured whey proteins in the treated protein-enriched milk product greater than that obtained in the prior art. The milk product, which is preheated and kept at temperature is indirectly cooled before direct heating by a recuperative cooling step from the preheating temperature to a cool-down temperature with a temperature difference ranging from 5 K to 10 K. The direct heating from the cool-down temperature to the high pasteurization temperature is controlled by direct heating setting parameters which are known per se. Finally, the milk product is cooled by flash cooling from the high pasteurization temperature to a necessarily required exit temperature.