Abstract:
A method and system for determining rail defects. The method and system receive route performance measurements from a vehicle system traveling along a route and normalize the route performance measurements based on one or more characteristics of the vehicle system. The method and a system also determine a defect for a segment of the route based at least in part on the normalized route performance measurements with respect to a threshold bandwidth corresponding to the segment. The method and system also examine velocity differences in a vehicle speed of a vehicle and the angular speed of the axles and/or wheels of the vehicle system traveling along a route to determine if the route is damaged and/or to identify the location of the potentially damaged section of the route. The differences may represent wheel creeps of the vehicle system.
Abstract:
A monitoring method and system monitor a transmitted current that is injected into conductive components of a route traveled by vehicle systems, monitor a received current that represents a portion of the transmitted current that is conducted through the conductive components of the route, examine changes in the transmitted and/or received current over time to determine when the vehicle systems are on the route between a first location where the transmitted current is injected into the conductive components and a second location where the received current is monitored, and examine the changes in the transmitted and/or received currents. The changes are examined to identify (a) a contaminated portion of a surface on which the route is disposed, (b) a foreign object other than the vehicle systems that is contacting the route, and/or (c) a damaged or broken portion of at least one of the conductive components of the route.
Abstract:
A route examining system includes first and second application devices, a control unit, first and second detection units, and an identification unit. The first and second application devices are disposed onboard a vehicle traveling along a route having conductive tracks. The control unit controls injection of a first examination signal into the conductive tracks via the first application device and injection of a second examination signal into the conductive tracks via the second application device. The first and second detection units monitor electrical characteristics of the route in response to the first and second examination signals being injected into the conductive tracks. The identification unit examines the electrical characteristics of the conductive tracks in order to determine whether a section of the route is potentially damaged based on the electrical characteristics.
Abstract:
Systems and methods for examining a route inject one or more electrical examination signals into a conductive route from onboard a vehicle system traveling along the route, detect one or more electrical characteristics of the route based on the one or more electrical examination signals, apply a filter to the one or more electrical characteristics, and detect a break in conductivity of the route responsive to the one or more electrical characteristics decreasing by more than a designated drop threshold for a time period within a designated drop time period. Feature vectors may be determined for the electrical characteristics and compared to one or more patterns in order to distinguish between breaks in the conductivity of the route and other causes for changes in the electrical characteristics.
Abstract:
A method and system for determining rail defects. The method and system receive route performance measurements from a vehicle system traveling along a route and normalize the route performance measurements based on one or more characteristics of the vehicle system. The method and a system also determine a defect for a segment of the route based at least in part on the normalized route performance measurements with respect to a threshold bandwidth corresponding to the segment. The method and system also examine velocity differences in a vehicle speed of a vehicle and the angular speed of the axles and/or wheels of the vehicle system traveling along a route to determine if the route is damaged and/or to identify the location of the potentially damaged section of the route. The differences may represent wheel creeps of the vehicle system.
Abstract:
A method for acoustically examining a route includes sensing passively excited residual sounds of a vehicle system during travel over a route, examining the passively excited residual sounds to identify one or more changes of interest in the passively excited residual sounds, and identifying a section of the route as being damaged responsive to the one or more changes of interest in the passively excited residual sounds that are identified.
Abstract:
A method includes forming a first schedule for a first vehicle to travel in a transportation network. The first schedule includes a first arrival time of the first vehicle at a scheduled location. The method also includes receiving a first trip plan for the first vehicle from an energy management system. The first trip plan is based on the first schedule and designates at least one of tractive efforts or braking efforts to be provided by the first vehicle to reduce at least one of an amount of energy consumed by the first vehicle or an amount of emissions generated by the first vehicle when the first vehicle travels through the transportation network to the scheduled location. The method further includes determining whether to modify the first schedule to avoid interfering with movement of one or more other vehicles by examining the trip plan for the first vehicle.
Abstract:
A monitoring method and system monitor a transmitted current that is injected into conductive components of a route traveled by vehicle systems, monitor a received current that represents a portion of the transmitted current that is conducted through the conductive components of the route, examine changes in the transmitted and/or received current over time to determine when the vehicle systems are on the route between a first location where the transmitted current is injected into the conductive components and a second location where the received current is monitored, and examine the changes in the transmitted and/or received currents. The changes are examined to identify (a) a contaminated portion of a surface on which the route is disposed, (b) a foreign object other than the vehicle systems that is contacting the route, and/or (c) a damaged or broken portion of at least one of the conductive components of the route.
Abstract:
A locomotive communication system includes a wireless communication device and a controller that controls operation of the wireless communication device. The controller directs the wireless communication device to switch between operating in an off-board communication mode and operating in an onboard communication mode. The wireless communication device communicates a remote data signal with an off-board location while the wireless communication device is operating in the off-board communication mode and the wireless communication device communicates a local data signal between the propulsion-generating vehicles of the vehicle system while the wireless communication device is operating in the onboard communication mode.
Abstract:
A system and method for examining a route and/or vehicle system obtain a route parameter and/or a vehicle parameter from discrete examinations of the route and/or the vehicle system. The route parameter is indicative of a health of the route over which the vehicle system travels. The vehicle parameter is indicative of a health of the vehicle system. The discrete examinations of the route and/or the vehicle system are separated from each other by location and/or time. The route parameter and/or the vehicle parameter are examined to determine whether the route and/or the vehicle system is damaged and, responsive to determining that the route and/or the vehicle is damaged, the route and/or the vehicle system are continually monitored, such as by examination equipment onboard the vehicle system.