Abstract:
A method of presenting data over a Web service interface includes: establishing, by a first computer process, a persistent transmission control protocol (TCP) network connection between the first computer process and a second computer process; dynamically allocating, by the second computer process, memory in response to receipt of static data over the persistent TCP network connection from the first computer process; updating, by the second computer process, the memory in response to receipt of dynamic data received over the persistent TCP network connection from the first computer process; and enabling, by the second computer process, a Web server to access the updated data for presentation by the Web service interface. The static data identifies a given entity and the dynamic data includes metric data provided for the entity.
Abstract:
A method of presenting data over a Web service interface includes: establishing, by a first computer process, a persistent transmission control protocol (TCP) network connection between the first computer process and a second computer process; dynamically allocating, by the second computer process, memory in response to receipt of static data over the persistent TCP network connection from the first computer process; updating, by the second computer process, the memory in response to receipt of dynamic data received over the persistent TCP network connection from the first computer process; and enabling, by the second computer process, a Web server to access the updated data for presentation by the Web service interface. The static data identifies a given entity and the dynamic data includes metric data provided for the entity.
Abstract:
In one embodiment, a source mask optimization (SMO) method is provided that includes controlling bright region efficiency during at least one optical domain step. The bright region efficiency being the proportion of the total transmitted light that is transferred to bright areas of a target pattern. The optical domain intermediate solution provided by the at least one optical domain step may then be binarized to obtain an initial spatial domain solution with a controlled MEEF (Mask Error Enhancement Factor). The MEEF is controlled during at least one spatial domain step that optimizes the initial spatial domain solution.