Abstract:
A vehicle system controller having an asymmetric system architecture and a method of operating the vehicle system controller is provided. The vehicle system controller includes a primary controller and a secondary controller in communications with the vehicle systems. Each of the controllers include a memory unit containing software application and a processor for executing the software to generate commands for the vehicle systems. The memory unit of the secondary controller contains only a subset of the total software applications contained in the memory unit of the primary controller. The subset of software applications is only for the operation of pre-identified features of the vehicle systems. The vehicle systems are configured to default to commands from the primary controller, but switches to the commands from the secondary controller for a predetermined length of time if the primary controller becomes fail-silent.
Abstract:
A method of controlling data communication between a vehicle and a plurality of wireless networks includes tracking a location of the vehicle over time to identify a known route, and tracking a signal duration for each of the plurality of wireless networks. One of the plurality of wireless networks that provides the longest signal duration for the vehicle, and which is available for data communication with the vehicle along the identified known route, is identified. When a current route of the vehicle is the same as the known route, data communication from the vehicle is connected to the available wireless network identified as providing the longest signal duration for the vehicle when moving along the identified known route.
Abstract:
Methods and systems are provided for communicating trailer information from a trailer to a vehicle. In one embodiment, the method includes: a plurality of zone-based modules configured to communicate with at least one of sensors and actuators of a vehicle; and at least one command center module configured to communicate with the plurality of zone-based modules. The at least one of the plurality of zone-based modules includes a configuration sub-module configured to, by a processor, facilitate communication of the trailer information from the trailer to at least one other of the plurality of zone-based modules. Each of the plurality of zone-based modules includes a configuration sub-module configured to, by a processor, facilitate communication of the trailer information between the plurality of zone-based modules. The at least one command center module includes a configuration sub-module configured to, by a processor, facilitate communication of the trailer information between the plurality of zone-based modules and vehicle applications.
Abstract:
Method and system for interfacing a plurality of providers and a plurality of recipients that are independently located with a unified vehicle service framework having a quality of service filter and a broker module. A first cloud unit has at least one of the plurality of providers and the plurality of recipients. A first vehicle and a second vehicle each respectively have another at least one of the plurality of providers and the plurality of recipients. A second cloud unit has yet another at least one of the plurality of providers and the plurality of recipients. The unified vehicle service framework is configured to receive a subscription request and determine whether it is granted based in part on a quality of service score assigned by the quality of service filter. When the subscription request is granted, respective services from plurality of providers are routed through the broker module.
Abstract:
Methods and systems are provided for controlling a temperature of a processor of a controller. In one embodiment, a method includes: identifying a status of at least one task of a plurality of software tasks performed on a first processor to be a hot task based on the software task's contribution to a temperature of the first processor; and selectively controlling the temperature of the first processor based on the identified status.
Abstract:
A modified dual-duplex fail-operational control system. A primary controller includes a first processing unit and a second processing unit for executing a function. A first comparative module comparing the function results from the first and second processing unit to determine an error the first controller. A second controller includes a first processing unit and second processing unit. The first processing unit executes the function. The second processing unit operating in a non-redundant state and not executing the function while in the non-redundant state. A second comparative module determines whether an error is present in the second controller. A matching function result identified by the first comparative module of the first controller is input to second comparative module of the second controller to determine whether an error is present in the second controller utilizing only the matching function result identified by the first comparative module and the function result determined by the first processing unit of the second controller.
Abstract:
Presented herein are intrusion detection systems and algorithms for networked vehicle controllers and devices, methods for making/using such systems and algorithms, and motor vehicles with a network of ECUs and network-profiling intrusion detection capabilities. A method for detecting intrusions into an onboard network of vehicle controllers includes determining the current state of operation of a vehicle, and identifying a network traffic pattern table corresponding to the vehicle's current state of operation. Network traffic flow for one of the in-vehicle controllers is monitored when exchanging data over the Ethernet communication interface while the motor vehicle is operating in the current state of operation. The method then determines if a traffic characteristic of the monitored network traffic flow is outside a calibrated boundary that is determined from the network traffic pattern table. Responsive to the monitored network traffic flow characteristic being outside the calibrated boundary, the method executes a remedial action response.
Abstract:
Methods and systems are provided for controlling a temperature of a processor of a controller. In one embodiment, a method includes: identifying a status of at least one task of a plurality of software tasks performed on a first processor to be a hot task based on the software task's contribution to a temperature of the first processor; and selectively controlling the temperature of the first processor based on the identified status.
Abstract:
A method of remotely controlling a graphic display unit. Requesting, by a host system, assistance of a remote system relating to a respective application, host system including at least one host graphic display unit displaying operational graphics relating to a dedicated application of the host system. The at least one host graphic display unit of the host system is accessed by the remote system. Graphical application data relating to the respective application display is transmitted from the remote system to the host system. Instructional graphic information is projected on the at least one host graphics display unit. Remotely controlling, by the remote system, the at least one host vehicle graphic display unit by displaying to a user of the host system instructional information relating to the respective application. An adaptive session protocol controls a speed in which data is transmitted from the remote system to the host system.
Abstract:
A vehicle, operating system of a vehicle and a method of operating a vehicle is disclosed. A local electronic control unit is operated at the vehicle in order to control the vehicle. A backup electronic control unit is operated at a remote computing platform for control of the vehicle. A control of the vehicle is transferred from the local electronic control unit to the backup electronic control unit upon occurrence of a fault at the local electronic control unit.