Abstract:
A braking system for an aircraft may comprise: a brake assembly; a hydraulic braking subsystem having a hydraulic brake actuator configured to operate the brake assembly; an electric braking subsystem having an electric brake actuator configured to operate the brake assembly and a load cell configured to measure a force supplied by the electric brake actuator; a hydraulic brake control unit configured to control the hydraulic braking subsystem; and an electric brake control unit configured to control the electric braking subsystem, the electric brake control unit in operable communication with the hydraulic brake control unit, the electric brake control unit configured to calibrate the load cell by a scale factor based on a measured force from the load cell, a measured hydraulic pressure used to exceed the measured force received from the hydraulic brake control unit, and a piston area of the hydraulic brake actuator.
Abstract:
A braking system is provided. The braking system may comprise a brake stack and an electromechanical actuator mechanically coupled to the brake stack. A first hydraulic chamber may also be mechanically coupled to the brake stack and in fluid communication with a first piston of the electromechanical actuator. A second piston may be in fluid communication with the first hydraulic chamber. The second piston may also be configured to translate towards the brake stack in response to a translation of the first piston.
Abstract:
A braking system is disclosed. In various embodiments, the brake system includes a brake assembly; a hydraulic braking subsystem having a hydraulic brake actuator configured to operate the brake assembly; and an electric braking subsystem having an electric brake actuator configured to operate the brake assembly.
Abstract:
A braking system is disclosed. In various embodiments, the brake system includes a brake assembly; a hydraulic braking subsystem having a hydraulic brake actuator configured to operate the brake assembly; and an electric braking subsystem having an electric brake actuator configured to operate the brake assembly.
Abstract:
An aircraft braking system is disclosed that includes a first pedal, first and second pedal sensors for the first pedal, a first brake control unit (e.g., primary), and a separate second brake control unit (e.g., secondary). The first pedal position sensor is operatively interconnected with one of the first brake control unit and the second brake control unit, while the second pedal position sensor is operatively interconnected with the other of the first brake control unit and the second brake control unit. Outputs from these pedal sensors may be used to control operation of the aircraft braking system in at least some fashion.
Abstract:
A method of controlling an aircraft braking system includes initiating the aircraft braking system by receiving a first brake command at a primary system to actuate braking via the primary system, receiving the first brake command at an alternate system, and in response to the primary system losing an ability to control a brake, controlling the braking of the brake via the alternate system.
Abstract:
A braking system is provided. The braking system may comprise a brake stack and an electromechanical actuator mechanically coupled to the brake stack. A first hydraulic chamber may also be mechanically coupled to the brake stack and in fluid communication with a first piston of the electromechanical actuator. A second piston may be in fluid communication with the first hydraulic chamber. The second piston may also be configured to translate towards the brake stack in response to a translation of the first piston.
Abstract:
The present disclosure provides systems and methods for multiple brake actuator operation under load cell failure. In various embodiments, a system for multiple brake actuator operation comprises a controller, a load cell in communication with the controller, a current sensor in communication with the controller, and a position sensor in communication with the controller and configured to measure a rotational speed of a motor shaft.
Abstract:
Controller is provided for electromechanical actuator such as an electric brake actuator having a motor driven in response to motor drive signal generated by controller. Controller includes first current limiter and second current limiter. First current limiter limits current command to maximum current limit in response to detecting that current command at least one of exceeds maximum current limit setpoint or is less than minimum current limit setpoint. Second current limiter further limits current and to limited current command in response to detecting that current command exceeds topper current detection limit for specified time duration. Controller may further include intermediate current limiter between first and second current limiters for further limiting current command from first current limiter in response to detecting current command from first current limiter at least one of exceeds maximum power limit setpoint or is less than minimum power limit setpoint.
Abstract:
Systems and methods of controlling a brake system are provided. The system may include the step of detecting, by a controller, a failure of a first load cell of a first electromechanical brake actuator (EBA). The method may further comprise estimating, by the controller, a force of the first EBA using a force output from a second load cell, and commanding, by the controller, the first EBA in response to the estimated force of the first EBA.