Abstract:
A first plurality of images of a scene may be captured. Each image of the first plurality of images may be captured using a different TET. Based at least on the first plurality of images, a long TET, a short TET, and a TET sequence that includes the long TET and the short TET may be determined. A second plurality of images of the scene may be captured. The images in the second plurality of images may be captured sequentially in an image sequence using a sequence of TETs corresponding to the TET sequence. Based on one or more images in the image sequence, an output image may be constructed.
Abstract:
A structure descriptor for an m×n pixel block of an image may be determined. The m×n pixel block may contain a primary pixel having a primary pixel value and a plurality of secondary pixels having respective secondary pixel values. The structure descriptor may include a plurality of structure indicators each associated with a respective secondary pixel. The respective structure indicators may be based on the primary pixel value and the respective secondary pixel value of the associated secondary pixel. Based on the structure descriptor, a structure value for the m×n pixel block may be determined. Based on the structure value, image processing may be applied to the m×n pixel block.
Abstract:
An image sensor of an image capture device may capture an image. The captured image may be stored in a buffer of two or more previously-captured images. An oldest image of the two or more previously-captured images may be removed from the buffer. An aggregate image of the images in the buffer may be updated. This updating may involve subtracting a representation of the oldest image from the aggregate image, and adding a representation of the captured image to the aggregate image. A viewfinder of the image capture device may display a representation of the aggregate image.
Abstract:
A plurality of images of a scene may be obtained. These images may have been captured by an image sensor, and may include a first image and a second image. A particular gain may have been applied to the first image. An effective color temperature and a brightness of a first pixel in the first image may be determined, and a mapping between pixel characteristics and noise deviation of the image sensor may be selected. The pixel characteristics may include pixel brightness. The selected mapping may be used to map at least the brightness of the first pixel to a particular noise deviation. The brightness of the first pixel and the particular noise deviation may be compared to a brightness of a second pixel of the second image. The comparison may be used to determine whether to merge the first pixel and the second pixel.
Abstract:
A base m×n tile, X, of a base image of a scene, and an alternate m×n tile, Y, of an alternate image of the scene may be obtained. An m×n blend map, B, for X and Y may also be obtained. B(i,j) may take on a first value to refer to X(i,j), or a second value to refer to Y(i,j). An m×n conflict map, C, for X and Y may further be obtained. C(i,j) may take on a third value where X(i,j) and Y(i,j) are within a threshold value of one another, or a fourth value where X(i,j) and Y(i,j) are not within the threshold value of one another. Based on B and C, the pixel values of X and Y may be merged to form an m×n tile Z.
Abstract:
A plurality of images of a scene may be obtained. These images may have been captured by an image sensor, and may include a first image and a second image. A particular gain may have been applied to the first image. An effective color temperature and a brightness of a first pixel in the first image may be determined, and a mapping between pixel characteristics and noise deviation of the image sensor may be selected. The pixel characteristics may include pixel brightness. The selected mapping may be used to map at least the brightness of the first pixel to a particular noise deviation. The brightness of the first pixel and the particular noise deviation may be compared to a brightness of a second pixel of the second image. The comparison may be used to determine whether to merge the first pixel and the second pixel.
Abstract:
A structure descriptor for an m×n pixel block of an image may be determined. The m×n pixel block may contain a primary pixel having a primary pixel value and a plurality of secondary pixels having respective secondary pixel values. The structure descriptor may include a plurality of structure indicators each associated with a respective secondary pixel. The respective structure indicators may be based on the primary pixel value and the respective secondary pixel value of the associated secondary pixel. Based on the structure descriptor, a structure value for the m×n pixel block may be determined. Based on the structure value, image processing may be applied to the m×n pixel block.
Abstract:
A first plurality of images of a scene may be captured. Each image of the first plurality of images may be captured with a different total exposure time (TET). Based at least on the first plurality of images, a TET sequence may be determined for capturing images of the scene. A second plurality of images of the scene may be captured. Images in the second plurality of images may be captured using the TET sequence. Based at least on the second plurality of images, an output image of the scene may be constructed.
Abstract:
A first plurality of images of a scene may be captured. Each image of the first plurality of images may be captured with a different total exposure time (TET). Based at least on the first plurality of images, a TET sequence may be determined for capturing images of the scene. A second plurality of images of the scene may be captured. Images in the second plurality of images may be captured using the TET sequence. Based at least on the second plurality of images, an output image of the scene may be constructed.
Abstract:
A first plurality of images of a scene may be captured. Each image of the first plurality of images may be captured with a different total exposure time (TET). Based at least on the first plurality of images, a TET sequence may be determined for capturing images of the scene. A second plurality of images of the scene may be captured. Images in the second plurality of images may be captured using the TET sequence. Based at least on the second plurality of images, an output image of the scene may be constructed.