Abstract:
In accordance with an exemplary embodiment, a method of forming a ceramic reinforced titanium alloy includes the steps of providing, in a pre-alloy powdered form, a ceramic reinforced titanium alloy composition that is capable of achieving a dispersion-strengthened microstructure, directing a low energy density energy beam at a portion of the alloy composition, and forming a ceramic reinforced titanium alloy metal having ceramic particulates of less than 10 μm on a weight-average basis. The step of forming includes the sub-steps of withdrawing the energy beam from the portion of the powdered alloy composition and cooling the portion of the powdered alloy composition at a rate greater than or equal to about 106° F. per second, thereby forming the ceramic reinforced titanium alloy metal.
Abstract:
The present disclosure relates to net-shape or near-net shape articles of manufacture and methods for producing the same. For example, a method for manufacturing net-shape or near-net shape metallic article includes the steps of: forming, using an additive manufacturing process, a metal can comprising a hollow interior portion, filling the hollow interior portion with a metal powder, and subjecting the metal can filled with the metal powder to a hot isostatic pressing (HIP) process to densify the metal powder. As another example, a net-shape or near-net shape metallic article of manufacture includes a metallic outer shell portion having a layer-by-layer fused microstructure that exhibits anisotropic mechanical and physical properties and a metallic inner core portion having a pressure-densified microstructure that exhibits isotropic mechanical and physical properties.
Abstract:
In accordance with an exemplary embodiment, a method of forming a oxide dispersion-strengthened alloy metal includes the steps of providing, in a powdered form, an oxide dispersion-strengthened alloy composition that is capable of achieving a dispersion-strengthened microstructure, directing a low energy density energy beam at a portion of the alloy composition, withdrawing the energy beam from the portion of the powdered alloy composition, and cooling the portion of the powdered alloy composition at a rate greater than or equal to about 106° F. per second, thereby forming the oxide dispersion-strengthened alloy metal.
Abstract:
Additive manufacturing techniques are used to achieve customized preforms for repair or manufacture of turbomachinery. A method of modifying a section of a product includes forming, a preform set to fit the section. A base material is selected with properties desired for the modification of the section. A binder is selected that vaporizes at a temperature below a melting point of the base material. The preform set is built by the selective application of the binder to the base material to achieve design dimensions of the section when the preform is joined to the section. The section is prepared for effecting the extent of modification and the preform is positioned on the section. The section and the preform are heated to substantially eliminate the binder from the preform and then thermally processed to harden the preform and to bond the preform to the section.
Abstract:
A method for hot isostatic pressing includes the steps of providing or obtaining an article of manufacture, which optionally includes a copper or nickel alloy, disposing the article of manufacture in a shroud, the shroud defining an enclosed volume wherein the article of manufacture is disposed, the shroud being configured as a multi-piece joined structure to retard gaseous mass transport from outside the shroud to inside the enclosed volume, disposing the shroud in a containment vessel of a hot isostatic pressing apparatus and disposing a getter material in the shroud and/or in the containment vessel, and introducing an inert gas at an elevated temperature and pressure into the containment vessel for hot isostatic pressing.
Abstract:
Embodiments of a gas turbine engine rotor including stress relief features are provided, as are embodiments of method for producing a gas turbine engine rotor. In one embodiment, the method includes producing a hub preform in which a plurality of elongated sacrificial cores are embedded. Blades are attached to an outer circumference of the hub preform by, for example, bonding a blade ring to the outer circumference of the preform. The blades are spaced about the rotational axis of the gas turbine engine rotor and circumferentially interspersed with the plurality of elongated sacrificial cores. The plurality of elongated sacrificial cores are then removed from the hub preform to yield a plurality of stress distribution tunnels extending in the hub preform.
Abstract:
A method for hot isostatic pressing includes the steps of providing or obtaining an article of manufacture, which optionally includes a copper or nickel alloy, disposing the article of manufacture in a shroud, the shroud defining an enclosed volume wherein the article of manufacture is disposed, the shroud being configured as a multi-piece joined structure to retard gaseous mass transport from outside the shroud to inside the enclosed volume, disposing the shroud in a containment vessel of a hot isostatic pressing apparatus and disposing a getter material in the shroud and/or in the containment vessel, and introducing an inert gas at an elevated temperature and pressure into the containment vessel for hot isostatic pressing.
Abstract:
Methods are provided for producing alloy forms from alloys containing one or more extremely reactive elements and for fabricating a component therefrom. The fabricating method comprises substantially removing a reactive gas from the fabrication environment. An alloy form of the alloy is formed. The alloy form is formed by melting the alloy or by melting one or more base elements of the alloy to produce a molten liquid and introducing the one or more extremely reactive elements into the molten liquid. The molten alloy is shaped into the alloy form. The component is formed from the alloy form. If the one or more extremely reactive elements are introduced into the molten liquid, such introduction occurs just prior to the shaping step.
Abstract:
Embodiments of a gas turbine engine rotor including stress relief features are provided, as are embodiments of method for producing a gas turbine engine rotor. In one embodiment, the method includes producing a hub preform in which a plurality of elongated sacrificial cores are embedded. Blades are attached to an outer circumference of the hub preform by, for example, bonding a blade ring to the outer circumference of the preform. The blades are spaced about the rotational axis of the gas turbine engine rotor and circumferentially interspersed with the plurality of elongated sacrificial cores. The plurality of elongated sacrificial cores are then removed from the hub preform to yield a plurality of stress distribution tunnels extending in the hub preform.
Abstract:
In accordance with an exemplary embodiment, a method of forming a ceramic reinforced titanium alloy includes the steps of providing, in a pre-alloy powdered form, a ceramic reinforced titanium alloy composition that is capable of achieving a dispersion-strengthened microstructure, directing a low energy density energy beam at a portion of the alloy composition, and forming a ceramic reinforced titanium alloy metal having ceramic particulates of less than 10 μm on a weight-average basis. The step of forming includes the sub-steps of withdrawing the energy beam from the portion of the powdered alloy composition and cooling the portion of the powdered alloy composition at a rate greater than or equal to about 106° F. per second, thereby forming the ceramic reinforced titanium alloy metal.