Abstract:
Systems and methods of crowd sourcing data are provided. In one embodiment, a method of crowd sourcing data comprises: receiving data region boundary information from an aggregation system, the data region boundary information defines boundaries of data regions; determining membership in a data group for a vehicle based on position of the vehicle within a region; determining whether another member of the data group has been selected as data source; determining whether the vehicle can provide information to the data aggregation system; broadcasting a self-nomination message for the information to members of the data group, wherein the self-nomination message self-selects the vehicle as data source for the information; wherein the self-nomination message identifies the type of information; and transmitting the information from the data source to the data aggregation system via a communication link, wherein only the data source transmits the information to the data aggregation system for the data group.
Abstract:
A system and method for dynamically recording vehicle data are provided. The system comprises an electronic unit onboard a vehicle, a data recording function hosted in the electronic unit, and one or more electronic data producers in operative communication with the data recording function. The data recording function is operative to receive a request specifying data parameters that at least include an identified electronic data set to record, a duration for the data recording, and a destination for the data recording. The data recording function is also operative to process the request based on the data parameters to produce a set of real time recorded data from the one or more electronic data producers, and to send the set of recorded data to a data storage location based on the destination in the request.
Abstract:
Computer-implemented methods for validating a real-time condition of a landing field using aircraft data. One method comprises identifying a plurality of segments of the runway based on a configurable parameter; receiving input data of at least one of a reported runway condition code and a reported braking action of a recently landed aircraft; receiving actual data of an actual runway deceleration profile from the recently landed aircraft for each identified segment of the runway; creating expected data of an expected runway deceleration profile based on the received input data and the received actual data; comparing the received actual data with the created expected data to validate and/or reassess the input data; and transmitting the validated and/or reassessed data to at least one of other approaching aircraft and an airport controller.
Abstract:
Systems and methods of crowd sourcing data are provided. In one embodiment, a method of crowd sourcing data comprises: receiving data region boundary information from an aggregation system, the data region boundary information defines boundaries of data regions; determining membership in a data group for a vehicle based on position of the vehicle within a region; determining whether another member of the data group has been selected as data source; determining whether the vehicle can provide information to the data aggregation system; broadcasting a self-nomination message for the information to members of the data group, wherein the self-nomination message self-selects the vehicle as data source for the information; wherein the self-nomination message identifies the type of information; and transmitting the information from the data source to the data aggregation system via a communication link, wherein only the data source transmits the information to the data aggregation system for the data group.
Abstract:
A method for updating aircraft data is provided. The method comprises: receiving one or more messages at a ground system that one or more aircraft is in a safe state on the ground; selecting one or more aircraft in the safe state to receive a software or database update from the ground system; verifying that the selected one or more aircraft in the safe state is in need of the software or database update; initiating a remote loading of the software or database update to the verified selected one or more aircraft in the safe state; and receiving one or more messages at the ground system from the verified selected one or more aircraft indicating a status of the remote loading.
Abstract:
A collaborative aviation information collection and distribution system includes a plurality of aircraft data transmitters and an aircraft data processing system. Each aircraft data transmitter is configured to selectively transmit aircraft data associated with a subscribing aircraft. The aircraft data processing system is in operable communication with each of the aircraft data transmitters and includes a data receiver, a data transmitter, and a data processor. The data receiver receives aircraft data transmitted from each of the aircraft transmitters. The data transmitter selectively transmits actionable aircraft data to one or more of the subscribing aircraft or subscribing ground-based users. The data processor determines which of, and when, the one or more subscribing aircraft or subscribing ground-based users should receive actionable aircraft data, generates actionable aircraft data from at least a portion of the received aircraft data, and supplies the generated actionable aircraft data to the data transmitter for transmission.
Abstract:
A collaborative aviation information collection and distribution system includes a plurality of aircraft data transmitters and an aircraft data processing system. Each aircraft data transmitter is configured to selectively transmit aircraft data associated with a subscribing aircraft. The aircraft data processing system is in operable communication with each of the aircraft data transmitters and includes a data receiver, a data transmitter, and a data processor. The data receiver receives aircraft data transmitted from each of the aircraft transmitters. The data transmitter selectively transmits actionable aircraft data to one or more of the subscribing aircraft or subscribing ground-based users. The data processor determines which of, and when, the one or more subscribing aircraft or subscribing ground-based users should receive actionable aircraft data, generates actionable aircraft data from at least a portion of the received aircraft data, and supplies the generated actionable aircraft data to the data transmitter for transmission.
Abstract:
A system and method for dynamically recording vehicle data are provided. The system comprises an electronic unit onboard a vehicle, a data recording function hosted in the electronic unit, and one or more electronic data producers in operative communication with the data recording function. The data recording function is operative to receive a request specifying data parameters that at least include an identified electronic data set to record, a duration for the data recording, and a destination for the data recording. The data recording function is also operative to process the request based on the data parameters to produce a set of real time recorded data from the one or more electronic data producers, and to send the set of recorded data to a data storage location based on the destination in the request.
Abstract:
A collaborative aviation information collection and distribution system includes a plurality of aircraft data transmitters and an aircraft data processing system. Each aircraft data transmitter is configured to selectively transmit aircraft data associated with a subscribing aircraft. The aircraft data processing system is in operable communication with each of the aircraft data transmitters and includes a data receiver, a data transmitter, and a data processor. The data receiver receives aircraft data transmitted from each of the aircraft transmitters. The data transmitter selectively transmits actionable aircraft data to one or more of the subscribing aircraft or subscribing ground-based users. The data processor determines which of, and when, the one or more subscribing aircraft or subscribing ground-based users should receive actionable aircraft data, generates actionable aircraft data from at least a portion of the received aircraft data, and supplies the generated actionable aircraft data to the data transmitter for transmission.
Abstract:
A subassembly for an integrated wireless module is provided. The subassembly includes an integrated-wireless-module input/output (I/O) connector, a modem controller; at least one internal antenna, and at least two modem connectors communicatively coupled to the modem controller, the modem connectors configured to interface with at least two modems. The modem controller digitally selects to one of: communicatively couple one of the at least two modem connectors to one of the at least one internal antenna; communicatively couple one of the at least two modem connectors to the integrated-wireless-module I/O connector; and communicatively couple a first one of the at least two modem connectors to one of the at least one internal antenna and communicatively couple a second one of the at least two modem connectors to the integrated-wireless-module I/O connector.