Abstract:
An image processing system for generating a display for a vehicle. The image processing system receives images, respectively, from a plurality of cameras mounted on the vehicle. The field of view of the plurality of cameras at least partially overlaps. The field of view of one or more of the plurality of cameras includes a region underneath the vehicle. The images are transformed to a common reference plane using a perspective transformation algorithm and based on intrinsic and extrinsic parameters of the plurality of cameras, to thereby obtain a projected image. The projected image is projected to the common reference plane. A display is generated based on the projected image. The display includes a synthetic depiction of the vehicle including an outer profile. The display includes an image area within the outer profile that is based on the projected image for the region underneath the vehicle.
Abstract:
Avionic display systems and methods are provided for generating avionic displays, which include symbology and other graphics pertaining to forecast overpressure events, which are forecast to occur during supersonic aircraft flight. In various embodiments, the avionic display system includes a display device on which an avionic display is produced. A controller architecture is operably coupled to the display device. Storage media contains computer-readable code or instructions that, when executed by the controller architecture, cause the avionic display system to determine whether an overpressure event is forecast to occur due to the predicted future occurrence of a sonic boom, which has a magnitude exceeding a boom tolerance threshold. When the controller architecture determines that an overpressure event is forecast to occur, the avionic display system further generates symbology on the avionic display indicative of or visually signifying the forecast overpressure event.
Abstract:
Avionic display systems and methods are provided for generating avionic displays including symbology decreasing the likelihood of boom tolerance threshold exceedance (an overpressure events) due to potential constructive interference between pressure waves occurring during supersonic flight. In various embodiments, the avionic display system includes a display device on which an avionic display is generated. A controller architecture is operably coupled to the display device and configured to determine when there exists a possibility for an overpressure event to occur in a future timeframe due to constructive interference between colliding pressure waves, which are forecast to occur during the impending supersonic flight of one or more A/C. When determining that there exists a possibility for an overpressure event to occur in the future timeframe due to constructive interference between pressure waves, the controller architecture further generates symbology or other graphics on the avionic display indicative of the potential occurrence of the overpressure event.
Abstract:
A flight deck display system for an aircraft includes a processor architecture configured to receive aircraft instrument data, waypoint restriction information, and position data for the aircraft and, based upon the received data, generate image rendering display commands. The system also includes a display element configured to receive the image rendering display commands and, in response thereto, to render a display that includes a perspective view of terrain and at least one waypoint marker corresponding to an approaching waypoint. The waypoint marker includes visually distinguishable characteristics that convey waypoint restriction information (e.g., altitude or airspeed constraint information that governs the waypoint).
Abstract:
Systems and methods for enhanced display of obstacles in a combined vision display are provided. The system comprises a display unit and an enhanced vision system configured to generate first signals representative of enhanced vision images. Data storage device contains obstacle data representative of obstacles. Synthetic vision system is configured to selectively retrieve obstacle data from data storage device and generate second signals representative of synthetic vision images of one or more obstacles. Processor is in operable communication with display unit and coupled to receive first and second signals and configured, in response thereto, to: overlay the synthetic vision images of the one or more obstacles over the enhanced vision images and command display unit to display the synthetic vision images of the one or more obstacles overlaid over the enhanced vision images. The overlaid synthetic vision images of the one or more obstacles may be visually highlighted.
Abstract:
Flight planning systems and methods are provided, which augment supersonic flight planning via the integration of sonic boom forecast data. In embodiments, the flight planning system includes a display device, a pilot input interface, and a controller architecture coupled to the display device and to the pilot input interface. During system operation, the controller architecture receives flight plan criteria entered via the pilot input interface. The controller architecture then endeavors to generate or construct a boom-regulated flight plan, which includes at least one supersonic flight plan segment, in accordance with the flight plan criteria. If unable to construct a boom-regulated flight plan, the controller architecture generates a visual notification on the display device. The visual notification can include, for example, a warning that an excessive sonic boom or overpressure event may occur during execution of the flight plan by an aircraft, absent modifications to the flight plan.
Abstract:
A processor-implemented method for dynamic contrast equalization for a see-through display subject to varying light conditions is provided. The method comprises: generating an intensity map for the field of view of the see-through display using a selected image portion of the retrieved image that is coextensive with the field of view of the see-through display; determining, using the intensity map, one or more sectors of the see-through display, on which a set of pixels corresponding to symbology in an overlay is to be displayed, that are in a high light intensity area; applying a filter to the see-through display at the one or more sectors of the see-through display to block a portion of light emanating from an external environment in the field of view of the see-through display; and displaying the overlay on the see-through display wherein the symbology is displayed over the one or more sectors.
Abstract:
Avionic display systems and methods are provided for generating avionic displays, which include symbology and other graphics pertaining to forecast overpressure events, which are forecast to occur during supersonic aircraft flight. In various embodiments, the avionic display system includes a display device on which an avionic display is produced. A controller architecture is operably coupled to the display device. Storage media contains computer-readable code or instructions that, when executed by the controller architecture, cause the avionic display system to determine whether an overpressure event is forecast to occur due to the predicted future occurrence of a sonic boom, which has a magnitude exceeding a boom tolerance threshold. When the controller architecture determines that an overpressure event is forecast to occur, the avionic display system further generates symbology on the avionic display indicative of or visually signifying the forecast overpressure event.
Abstract:
A dynamic runway indicator is displayed overlying a conformal runway for assisting a pilot in completing an approach to landing on a runway. The dynamic runway indicator includes a polygon, that by changing position with respect to the conformal runway, provides advanced instrumentation cues to the pilot for adjusting the aircraft flight path to a normal, or recommended, path to the runway for landing, thereby assisting the pilot to improve the accuracy and safety of the approach and landing.
Abstract:
Systems and methods for enhanced display of obstacles in a combined vision display are provided. The system comprises a display unit and an enhanced vision system configured to generate first signals representative of enhanced vision images. Data storage device contains obstacle data representative of obstacles. Synthetic vision system is configured to selectively retrieve obstacle data from data storage device and generate second signals representative of synthetic vision images of one or more obstacles. Processor is in operable communication with display unit and coupled to receive first and second signals and configured, in response thereto, to: overlay the synthetic vision images of the one or more obstacles over the enhanced vision images and command display unit to display the synthetic vision images of the one or more obstacles overlaid over the enhanced vision images. The overlaid synthetic vision images of the one or more obstacles may be visually highlighted.