Abstract:
An asphalt composition includes asphalt, a non-epoxidized oil chosen from flux oils, bio oils, recycled motor oils, liquid plasticizers, and combinations thereof, and a polyolefin. The polyolefin has a weight average molecular weight (Mw) of from about 1,000 to about 20,000 g/mol, an optional acid number of from about 10 to about 50 mg KOH/g, an optional saponification number of from about 10 to about 100 mg KOH/g, and a density of from about 0.92 to about 1 g/cm3. The asphalt composition has a performance grade of PG (52 to 88) and (−22 to −40), wherein (52 to 88) is an average seven day maximum pavement design temperature in degrees Celsius and represents deformation resistance and (−22 to −40) is an average one day minimum pavement design temperature in degrees Celsius and represents thermal cracking resistance, each as determined using AASHTO M320.
Abstract:
Plastomer-modified asphalt binders meeting MSCR specifications, asphalt paving materials with such asphalt binders, and methods for fabricating such asphalt binders are provided. The asphalt binder contains a base asphalt and a plastomer. If the plastomer has a drop point no greater than about 139° C., the asphalt binder further contains sulfur; sulfur-containing compounds, such as hydrocarbyl polysulfides and thiuram disulfides; phenolic resins; metal oxides; or a combination thereof. The asphalt binder is substantially free of elastomer.
Abstract:
Asphalt compositions for roofing applications are provided, as well as filled asphalt material comprising the asphalt compositions and methods for making asphalt compositions and filled asphalt material. More particularly, the asphalt compositions comprise non-oxidized base asphalt; and a low molecular weight polyolefin present in an amount of from about 0.5 to about 15 wt % based on the total weight of the asphalt composition. The asphalt composition has a softening point from about 87.8 to about 160° C. (about 190 to about 320° F.), a penetration of greater than 12 deci-millimeters @ 25° C., as well as improved stain resistance and heat resistance.
Abstract:
Methods for reducing asphalt pavement thickness are provided. A method for producing thin asphalt pavement includes combining a base asphalt, an oxidized polyolefin, and an aggregate to form an asphalt paving material. A layer of the asphalt paving material is deposited on a substrate layer and compacted to a thickness.
Abstract:
Plastomer-modified asphalt binders meeting MSCR specifications, asphalt paving materials with such asphalt binders, and methods for fabricating such asphalt binders are provided. The asphalt binder contains a base asphalt and a plastomer. If the plastomer has a drop point no greater than about 139° C., the asphalt binder further contains sulfur; sulfur-containing compounds, such as hydrocarbyl polysulfides and thiuram disulfides; phenolic resins; metal oxides; or a combination thereof. The asphalt binder is substantially free of elastomer.
Abstract:
A non-blown roofing grade bitumen composition comprising bitumen feedstock, polyolefin having a molecular weight of from about 800 to about 50,000 g/mol, and optionally one or more additives, wherein the softening point of the composition is above 70° C. as determined according to method ASTM D36 and the penetration of the composition is at least about 12 dmm at 25° C. as determined according to method ASTM D5. A method of making the same.
Abstract:
Asphalt adhesive compositions and methods of producing the same are provided. In an exemplary embodiment, an asphaltic adhesive useful for self-adhering membranes includes asphalt at from about 40 to about 70 weight percent, based on a total weight of the adhesive. The adhesive also includes a low molecular weight (LMW) polyolefin at from about 1 to about 10 weight percent, based on the total weight of the adhesive. The LMW polyolefins have a weight average molecular weight (Mw) of from about 500 to about 20,000 Daltons. The adhesive has an aged peeling strength greater than an aged peeling strength of a comparable comparison adhesive, wherein the comparison adhesive includes from about 40 to about 70 weight percent asphalt but is free of a LMW polyolefin, as determined by Guobiao recommended (GB/T) 328.20-2007 in specification Guobiao (GB) 23441-2009 (self-adhering polymer modified bituminous waterproof sheet.)
Abstract:
A non-blown roofing grade bitumen composition comprising bitumen feedstock, polyolefin having a molecular weight of from about 800 to about 50,000 g/mol, and optionally one or more additives, wherein the softening point of the composition is above 70° C. as determined according to method ASTM D36 and the penetration of the composition is at least about 12 dmm at 25° C. as determined according to method ASTM D5. A method of making the same.
Abstract:
Asphalt compositions for roofing applications are provided, as well as filled asphalt material comprising the asphalt compositions and methods for making asphalt compositions and filled asphalt material. More particularly, the asphalt compositions comprise non-oxidized base asphalt; and a low molecular weight polyolefin present in an amount of from about 0.5 to about 15 wt % based on the total weight of the asphalt composition. The asphalt composition has a softening point from about 87.8 to about 160° C. (about 190 to about 320° F.), a penetration of greater than 12 deci-millimeters @ 25° C., as well as improved stain resistance and heat resistance.
Abstract:
An asphalt composition includes asphalt, a non-epoxidized oil chosen from flux oils, bio oils, recycled motor oils, liquid plasticizers, and combinations thereof, and a polyolefin. The polyolefin has a weight average molecular weight (Mw) of from about 1,000 to about 20,000 g/mol, an optional acid number of from about 10 to about 50 mg KOH/g, an optional saponification number of from about 10 to about 100 mg KOH/g, and a density of from about 0.92 to about 1 g/cm3. The asphalt composition has a performance grade of PG (52 to 88) and (−22 to −40), wherein (52 to 88) is an average seven day maximum pavement design temperature in degrees Celsius and represents deformation resistance and (−22 to −40) is an average one day minimum pavement design temperature in degrees Celsius and represents thermal cracking resistance, each as determined using AASHTO M320.