Abstract:
A multi-node server includes a plurality of nodes and a hard disk backplane. Each node includes a power supply module. The power supply module is built in the node. The hard disk backplane is connected to the plurality of nodes through a first connector. The power supply module of each node is connected to a power supply interface of another node through a second connector, where the first connector and the second connector are spaced apart, and air flowing from an air inlet of the multi-node server circulates through a spacing between the first connector and the second connector. A system backplane for connection is not arranged in the multi-node server, but is replaced with the first connector and the second connector with a relatively small volume.
Abstract:
A method for remotely managing a sensor network topology includes: receiving a device management DM command sent by a device management server, where the DM command acts on a preconstructed management object MO node and the MO node includes a node configured to discover a sensor network topology, a node configured to describe a sensor network topology, or a node configured to modify a sensor network topology; and managing a sensor network according to the DM command, where the management includes discovering the sensor network topology, describing the sensor network topology, or modifying the sensor network topology. By adopting the present invention, remote topology management of a sensor network successive to an M2M gateway can be implemented and the complexity for implementing the management is reduced.
Abstract:
A network system includes a device management (DM) server and a Machine to Machine (M2M) gateway coupled to the DM server and to a plurality of sensor devices in a sensor network. The DM server is configured to send a DM command. The M2M gateway is configured to: after receiving the DM command, access a topology tree that includes first and second management object (MO) nodes, wherein the first MO node includes an identification and a type of the sensor network and the second MO node describes a characteristic of each of the plurality of sensor devices and a connection relationship of the plurality of sensor devices; according to address information within the DM command, locate at least one of the first and second MO nodes; retrieve information from the located at least one of the first and second MO nodes; and send the retrieved information to the DM server.
Abstract:
A hard disk holder includes an integrated sheet metal framework. The integrated sheet metal framework is a main body structure of the hard disk holder, and a head and a tail of the integrated sheet metal framework are clamped to form a closed framework. The integrated sheet metal framework specifically includes a first side plate, a head end plate, a second side plate, and a tail end plate that are formed by sheet metal and are disposed in sequence. An inner side of the first side plate and an inner side of the second side plate each have a limiting bulge, and the hard disk body has limiting holes. The limiting bulges adapt to the limiting holes. When the hard disk body is mounted to the hard disk holder, the limiting bulges extend into the limiting holes to form a limiting structure.
Abstract:
A distributed data storage method, apparatus, and system. The method includes: splitting a data file to generate K data slices, splitting each data slice of the K data slices to generate M data blocks for each data slice, and performing check coding on the M data blocks by using a redundancy algorithm to generate N check blocks; determining, by using a random algorithm, a first physical storage node corresponding to one block of the M data blocks and the N check blocks, and determining at least M+1 different physical storage nodes based on the determined first physical storage node and according to a first rule-based sorting manner; and storing at least M+1 blocks of the M data blocks and the N check blocks onto the at least M+1 different storage nodes, where K, M, and N are integers.
Abstract:
A distributed data storage method, apparatus, and system for reducing a data loss that may result from a single-point failure. The method includes: splitting a data file to generate K data slices, splitting each data slice of the K data slices to generate M data blocks for each data slice, and performing check coding on the M data blocks by using a redundancy algorithm to generate N check blocks; determining, by using a random algorithm, a first physical storage node corresponding to one block of the M data blocks and the N check blocks, and determining at least M+1 different physical storage nodes based on the determined first physical storage node and according to a first rule-based sorting manner; and storing at least M+1 blocks of the M data blocks and the N check blocks onto the at least M+1 different storage nodes, where K, M, and N are integers.
Abstract:
This application provides a communication method, apparatus, and device. In the method, when a target tenant has a network operation and maintenance management requirement for accessing first information by using a first service, an NMS of the target tenant can successfully access the first information regardless of whether the target tenant has permission to invoke the first service. In addition, the first information is transmitted between an EMS and the tenant NMS of the target tenant without passing through an operator NMS. Therefore, security of the first information can be ensured.
Abstract:
The present invention provides a disk detection method and apparatus. The method includes: collecting a set of N pieces of real-time data that are in a one-to-one correspondence with N input/output I/O-related counters of a disk, where the N I/O-related counters include an I/O response time of the disk and a counter affecting the I/O response time; the I/O response time is a time between delivery of an operation request by an application and reception of a response of the disk to the request; determining, according to the N pieces of real-time data, whether the I/O response time is abnormal; and outputting a detection result if the I/O response time is abnormal, where the detection result is used to represent that the I/O response time is abnormal.
Abstract:
A group communication method is provided, including: receiving, from a network application, a group access request that requests access to a group, where the group access request includes a group identifier of the group; obtaining group member information of all group members in the group according to the group identifier; according to the group member information, determining members of a first group that are connected to a service function entity through a same gateway in the group; and sending, to the gateway, a first group member access request that requests access to the members of the first group. In addition, a service function entity for group communication and a gateway for group communication are provided. The present invention is capable of reducing signaling overhead during group communication and thereby improving group communication efficiency.
Abstract:
The motherboard includes a basic computing unit and an extension unit. The basic computing unit is provided with a basic component and an external interface. The extension unit is configured to extend a function of the basic computing unit. The basic computing unit is coupled to a second external interface of the extension unit through a first external interface on the basic computing unit. A conventional motherboard is split, and a basic computing unit that includes only a processor subsystem and an extension unit that extends input/output and management are formed by properly dividing the processor subsystem and a peripheral system. Impact of an extension component on the basic computing unit is reduced, and the extension component can be flexibly replaced based on an actual requirement.