摘要:
An infrared sensor unit has a thermal infrared sensor and an associated semiconductor device commonly developed on a semiconductor substrate. A dielectric top layer covers the substrate to conceal the semiconductor device formed in the top surface of the substrate. The thermal infrared sensor carried on a sensor mount which is supported above the semiconductor device by means of a thermal insulation support. The sensor mount and the support are made of a porous material which is superimposed on top of the dielectric top layer.
摘要:
An infrared sensor unit has a thermal infrared sensor and an associated semiconductor device commonly developed on a semiconductor substrate. A dielectric top layer covers the substrate to conceal the semiconductor device formed in the top surface of the substrate. The thermal infrared sensor carried on a sensor mount which is supported above the semiconductor device by means of a thermal insulation support. The sensor mount and the support are made of a porous material which is superimposed on top of the dielectric top layer.
摘要:
An electron source 10 has an n-type silicon substrate 1, a drift layer 6 formed on one surface of the substrate 1, and a surface electrode 7 formed on the drift layer 6. A voltage is applied so that the surface electrode 7 becomes positive in polarity relevant to the substrate 1, whereby electrons injected from the substrate 1 into the drift layer 6 drift within the drift layer 6, and are emitted through the surface electrode 7. In a process for manufacturing this electron source 10, when the drift layer 6 is formed, a porous semiconductor layer containing a semiconductor nanocrystal is formed in accordance with anodic oxidation. Then, an insulating film is formed on the surface of each semiconductor nanocrystal. Anodic oxidation is carried out while emitting light that essentially contains a wavelength in a visible light region relevant to the semiconductor layer.
摘要:
A field emission-type electron source 10 includes an insulative substrate 11 in the form of a glass substrate having an electroconductive layer 8 formed thereon. A strong electrical field drift layer 6 in the form of an oxidized porous polycrystalline silicon layer is formed over the electroconductive layer 8. This electroconductive layer 8 includes a lower electroconductive film 8a, made of copper and formed on the insulative substrate 11, and an upper electroconductive film 8b made of aluminum and formed over the electroconductive film 8a. The strong electrical field drift layer 6 is formed by forming a polycrystalline silicon layer on the electroconductive layer 8, rendering the polycrystalline silicon layer to be porous and finally oxidizing it. The upper electroconductive film 8b has a property that reacts easily with silicon and, therefore, formation of an amorphous layer which would occur during formation of the polycrystalline silicon layer can be suppressed.
摘要:
In a field emission-type electron source (10), lower electrodes (8) made of an electroconductive layer, a strong field drift layer (6) including drift portions (6a) made of an oxidized or nitrided porous semiconductor, and surface electrodes (7) made of a metal layer are provided on an upper side of a dielectric substrate (11) made of glass. When voltage is applied to cause the surface electrodes (7) to be anodic with respect to the lower electrodes (8), electrons injected from the lower electrodes (8) to the strong field drift layer (6) are led to drift through the strong field drift layer (6) and are emitted outside through the surface electrodes (7). A pn-junction semiconductor layer composed of an n-layer (21) and a p-layer (22) is provided between the lower electrode (8) and the strong field drift layer (6) to prevent a leakage current from flowing to the surface electrode (7) from the lower electrode (8), thereby reducing amount of power consumption.
摘要:
An electron source (10) is provided with an n-type silicon substrate (1) as a conductive substrate, a drift layer (6) composed of oxidized porous polycrystalline silicon which is formed on the main surface of the silicon substrate (1), and a surface electrode (7) as a conductive thin film formed on the drift layer (6). The process for, forming the surface electrode (7) includes the steps of forming a first layer composed of Cr on the drift layer (6), forming a second layer composed of Au on the first layer, and alloying the two layers. The surface electrode (7) has higher adhesion for the drift layer 6 and/or stability for the lapse of time. In addition, the surface electrode (7) has lower density of states in an energy region near energy of emitted electrons, in comparison with the simple substance of Cr. In the surface electrode (7), scattering of the electrons is less so that electron emitting efficiency is higher.
摘要:
In a field emission-type electron source (10), a strong field drift layer (6) and a surface electrode (7) consisting of a gold thin film are provided on an n-type silicon substrate (1). An ohmic electrode (2) is provided on the back surface of the n-type silicon substrate (1). A direct current voltage is applied so that the surface electrode (7) becomes positive in potential relevant to the ohmic electrode (2). In this manner, electrons injected from the ohmic electrode (2) into the strong field drift layer (6) via the n-type silicon substrate (6) drift in the strong field drift layer (6), and is emitted to the outside via the surface electrode (7). The strong field drift layer (6) has: a number of semiconductor nanocrystals (63) of nano-meter order formed partly of a semiconductor layer configuring the strong field drift layer (6); and a number of insulating films (64) each of which is formed on the surface of each of the semiconductor nanocrystals (63) and each having film thickness to an extent such that an electron tunneling phenomenon occurs.
摘要:
An array of field emission electron sources and a method of preparing the array which discharges electrons from desired regions of a surface electrode of field emission electron sources. The field emission electron source 10 comprises an electrically conductive substrate of p-type silicon substrate 1; n-type regions 8 of stripes of diffusion layers on one of principal surfaces of the p-type silicon substrate, strong electric field drift layers 6 formed on the n-type regions 8 which is made of oxidized porous poly-silicon for drifting electrons injected from the n-type region 8; poly-silicon layers 3 between the strong field drift layers 6; surface electrodes 7 of the stripes of thin conductive film formed in a manner to cross over the stripes of the strong field drift layer 6 and the poly-silicon layers 3. By selecting a pair of the n-type regions 8 and the surface electrodes 7 and thereby making electron emitted from the crossing points due to combination of the surface electrode 7 to be electrically applied and the n-type region 8 to be electrically applied, electrons can be discharged from desired regions of the surface electrodes 7.
摘要:
An electron source (10) has an electron source element (10a) including a lower electrode (12), a drift layer (6) and a surface electrode (7). The drift layer (6) is interposed between the lower electrode (12) and the surface electrode (7). When a certain voltage is applied between the surface electrode (7) and the lower electrode (12) such that the surface electrode (7) has a higher potential than that of the lower electrode (12), a resultingly induced electric field allows electrons to pass through the drift layer (6) and then the electrons are emitted through the surface electrode (7). When a forward-bias voltage is applied between the surface electrode (7) and the lower electrode (12), a reverse-bias voltage is applied after the forward-bias voltage has been applied to release out of the drift layer (6) an electron captured by a trap (9) in the drift layer (6).
摘要:
A lower electrode (2) and surface electrode (7) composed of a layer-structured conductive carbide layer is formed on one principal surface side of the substrate (1) composed of an insulative substrate such as a glass or ceramic substrate. A non-doped polycrystalline silicon layer (3) is formed on the lower electrode (2). An electron transit layer (6) composed of an oxidized porous polycrystalline silicon is formed on the polycrystalline silicon layer (3). The electron transit layer (6) is composed of a composite nanocrystal layer including polycrystalline silicon and many nanocrystalline silicons residing adjacent to a grain boundary of the polycrystalline silicon. When voltage is applied between the lower electrode (2) and the surface electrode (7) such that the surface electrode (7) has a higher potential, electrons are injected from the lower electrode (2) toward the surface electrode (7), and emitted through the surface electrode (7) through the electron transit layer (6).