Abstract:
Methods and apparatuses are described herein that facilitate mesh network communication by a millimeter wave base stations (mBs) or WTRUs as nodes of a directional mesh network with other nodes of the directional mesh network. The mB or WTRU may include a directional antenna configured to transmit and receive signals in specific directions during the mesh network communication to define a directional mesh network. The mBs or WTRUs may transmit transmission request messages to neighbor nodes, wherein the transmission request messages include transmission slot allocation bitmaps and channel quality indicator information (CQI). Then response messages from the neighbor nodes may be received, wherein the response messages include receive slot allocation bitmaps and resource allocation decisions. The mBs or WTRUs may then update their transmission slot allocation bitmaps based on the received response messages and transmit data packets in specific directions based on the updated transmission slot allocation bitmap.
Abstract:
A method and apparatus are disclosed for communication in a Millimeter Wave Hotspot (mmH) backhaul system which uses mesh nodes. A mmH mesh node may receive a control signal which includes a total number of available control slots. The mesh node may determine the number of iterations of a resource scheduling mechanism that can be made during the time period of all available control slots, based on the number of neighbor nodes for the mesh node. Further, the mesh node may receive control slot information, including information about traffic queues and priorities. The mesh node may then perform resource scheduling using the resource scheduling mechanism based on the currently received control slot information and control slot information received in previous iterations of resource scheduling. The mesh node may also adjust a preamble based on a time between a last packet transmission and a current packet transmission to a neighboring node.
Abstract:
A method and apparatus are disclosed for establishing a low latency millimeter wave (mmW) backhaul connection. A base station may receive a mmW relay schedule from an evolved Node B (eNB) within one Long Term Evolution (LTE) scheduling interval. The base station may decode the mmW relay schedule, and initialize a mmW radio transmission resource according to the mmW relay schedule. The base station may receive a data packet from a second base station in a mmW transmission time interval (TTI) based on the mmW relay schedule using the initialized mmW radio transmission resource, and may transmit the data packet to a third base station based on the mmW relay schedule using the initialized mmW radio transmission resource. The transmitting may begin before the reception of the data packet is complete.
Abstract:
A method and apparatus for using demodulation reference signal (DM-RS) based channel state information (CSI) feedback in Orthogonal Frequency Division Multiplexing-multiple-input multiple-output (OFDM-MIMO) systems is disclosed. The wireless transmit/receive unit (WTRU) receives one or more resource blocks from a base station, wherein the resource blocks (RBs) include demodulating reference signals (DM-RS) and precoder information. The precoder information is sent unicast or broadcasted over a common control channel. The WTRU estimates an effective channel estimate based on the DM-RS, derives an unprecoded channel based on the effective channel and the precoder information, generates CSI feedback based on the unprecoded channel, and transmits the CSI feedback to the base station. Alternatively, the WTRU estimates an effective channel estimate based on the DM-RS, quantizes the effective channel estimate and transmits the CSI feedback to the base station.
Abstract:
A method and apparatus are disclosed for communication in a Millimeter Wave Hotspot (mmH) backhaul system which uses mesh nodes. A mmH mesh node may receive a control signal which includes a total number of available control slots. The mesh node may determine the number of iterations of a resource scheduling mechanism that can be made during the time period of all available control slots, based on the number of neighbor nodes for the mesh node. Further, the mesh node may receive control slot information, including information about traffic queues and priorities. The mesh node may then perform resource scheduling using the resource scheduling mechanism based on the currently received control slot information and control slot information received in previous iterations of resource scheduling. The mesh node may also adjust a preamble based on a time between a last packet transmission and a current packet transmission to a neighboring node.
Abstract:
A method and apparatus for joint routing and distributed scheduling in a directional mesh network includes receiving feedback for multiple candidate paths from at least one neighbor node, Semi-static and instantaneous metrics are determined based upon the received feedback. Routing from a first node to a destination node is determined based upon the semi-static and instantaneous metrics, and a transmission is routed in accordance with the determined route from the first node to the destination node.
Abstract:
Techniques may be used for interference measurement and management in directional mesh networks, including centralized and/or distributed approaches. A centralized node, such as an operations and maintenance (OAM) center, may use feedback from nodes in the mesh network to partition the nodes in the mesh network into clusters based on interference levels. Interference measurement reports may be used by the centralized node to update cluster membership. An initiating node in the mesh network may use topographical information to generate an initial interference cluster, and interference measurement frame (IMF) scheduling information may be used to schedule transmissions within the interference clusters. Techniques for opportunistic measurement campaigns, simultaneous measurement campaigns, link failure detection, and link re-acquisition in directional mesh networks may also be used.
Abstract:
A method and apparatus are disclosed for communication in a Millimeter Wave Hotspot (mmH) backhaul system which uses mesh nodes. A mmH mesh node may receive a control signal which includes a total number of available control slots. The mesh node may determine the number of iterations of a resource scheduling mechanism that can be made during the time period of all available control slots, based on the number of neighbor nodes for the mesh node. Further, the mesh node may receive control slot information, including information about traffic queues and priorities. The mesh node may then perform resource scheduling using the resource scheduling mechanism based on the currently received control slot information and control slot information received in previous iterations of resource scheduling. The mesh node may also adjust a preamble based on a time between a last packet transmission and a current packet transmission to a neighboring node.
Abstract:
A method and apparatus are disclosed for establishing a low latency millimeter wave (mmW) backhaul connection. A base station may receive a mmW relay schedule from an evolved Node B (eNB) within one Long Term Evolution (LTE) scheduling interval. The base station may decode the mmW relay schedule, and initialize a mmW radio transmission resource according to the mmW relay schedule. The base station may receive a data packet from a second base station in a mmW transmission time interval (TTI) based on the mmW relay schedule using the initialized mmW radio transmission resource, and may transmit the data packet to a third base station based on the mmW relay schedule using the initialized mmW radio transmission resource. The transmitting may begin before the reception of the data packet is complete.
Abstract:
Device discovery at long ranges using directional antenna patterns for both transmission and reception of discovery beacon messages and discovery beacon response messages. Omnidirectional band transmissions to assist aiming a directional antenna are also described. Further, discovery beacons that include only those information elements which are necessary for device discovery are discussed, as well as separate scheduling beacons. The discovery beacon may include more robust encoding to increase discovery range or may be transmitted using a narrower channel to improve signal to noise ratio.