Abstract:
An apparatus for shifting a digital signal having a first sample rate by a shift time to provide a shifted signal having a second sample rate is provided. The apparatus includes a sample rate converter configured to provide a value of an interpolated signal at a compensated sample time as a sample of the shifted signal, the interpolated signal being based on the digital signal. The sample rate converter is configured to modify a time interval between a sample time of the digital signal and the compensated sample time based on the shift time.
Abstract:
A modulator and associated method includes a calculation block configured to receive a plurality of digital samples of a modulated baseband signal, and determine time instances associated with predetermined phase crossings of the modulated baseband signal. The modulator further includes a converter circuit configured to generate a data dependent clock signal having rising and falling edges associated with the determined time instances, and a digital to analog converter configured to receive the data dependent clock signal and generate a square wave output signal having transition times associated with the generated data dependent clock signal.
Abstract:
An apparatus for shifting a digital signal having a first sample rate by a shift time to provide a shifted signal having a second sample rate is provided. The apparatus includes a sample rate converter configured to provide a value of an interpolated signal at a compensated sample time as a sample of the shifted signal, the interpolated signal being based on the digital signal. The sample rate converter is configured to modify a time interval between a sample time of the digital signal and the compensated sample time based on the shift time.
Abstract:
A modulator and associated method includes a calculation block configured to receive a plurality of digital samples of a modulated baseband signal, and determine time instances associated with predetermined phase crossings of the modulated baseband signal. The modulator further includes a converter circuit configured to generate a data dependent clock signal having rising and falling edges associated with the determined time instances, and a digital to analog converter configured to receive the data dependent clock signal and generate a square wave output signal having transition times associated with the generated data dependent clock signal.
Abstract:
A circuit for generating a oscillating with a selectable frequency, comprises a delay generator configured to identify a first time instant, the first time instant being delayed with respect to a signal edge of a clock signal oscillating with a predetermined clock frequency. A delay element is configured to provide a signal edge, the signal edge being delayed with respect to the first time instant such that the signal edge is provided at a second time instant corresponding to a signal edge of the synthesized signal.
Abstract:
A circuit for generating a oscillating with a selectable frequency, comprises a delay generator configured to identify a first time instant, the first time instant being delayed with respect to a signal edge of a clock signal oscillating with a predetermined clock frequency. A delay element is configured to provide a signal edge, the signal edge being delayed with respect to the first time instant such that the signal edge is provided at a second time instant corresponding to a signal edge of the synthesized signal.
Abstract:
An apparatus for shifting a digital signal having a first sample rate by a shift time to provide a shifted signal having a second sample rate is provided. The apparatus includes a sample rate converter configured to provide a value of an interpolated signal at a compensated sample time as a sample of the shifted signal, the interpolated signal being based on the digital signal. The sample rate converter is configured to modify a time interval between a sample time of the digital signal and the compensated sample time based on the shift time.
Abstract:
This document discusses apparatus and methods for reducing energy consumption of digital-to-time converter (DTC) based transmitters. In an example, a wireless device can include a digital-to-time converter (DTC) configured to receive phase information from a baseband processor and to provide a first modulation signal for generating a wireless signal, and a detector configured to detect an operating condition of the wireless device and to adjust a parameter of the DTC in response to a change in the operating condition.