Abstract:
A system for determining a position of an endoscopic instrument comprises an endoscopic instrument having an elongate body portion, the elongate body portion being configured to be moved along a path, and a plurality of sensible elements disposed at differing axial positions along the elongate body portion, wherein each sensible element transmits unique information indicative of the respective differing axial position of the sensible elements. The system further comprises a sensing device positioned to receive the unique information from a respective sensible element when the respective sensible element is in sufficient proximity to the sensing device, the sensible elements being in sufficient proximity to the sensing device at differing times based upon a position of the elongate body portion relative to the path.
Abstract:
A medical instrument may comprise a first articulatable segment having a first diameter, and a second articulatable segment having a second diameter smaller than the first diameter, wherein the second articulatable segment is coupled to the first articulatable segment and extends in a distal direction past the first articulatable segment. The instrument may also comprise a first force transmission element coupled to the first articulatable segment and extending in a proximal direction from the first articulatable segment to a first connector portion, the first connector portion being configured to be releasably coupled with a first actuator, and a second force transmission element coupled to the second articulatable segment and extending in a proximal direction from the second articulatable segment to a second connector portion, the second connector portion being configured to be releasably coupled with a second actuator. The first and second force transmission elements may be configured to transmit actuation forces, respectively, to articulate the first and second articulatable segments independently of one another.
Abstract:
A medical instrument may comprise a first articulatable segment having a first diameter, and a second articulatable segment having a second diameter smaller than the first diameter, wherein the second articulatable segment is coupled to the first articulatable segment and extends in a distal direction past the first articulatable segment. The instrument may also comprise a first force transmission element coupled to the first articulatable segment and extending in a proximal direction from the first articulatable segment to a first connector portion, the first connector portion being configured to be releasably coupled with a first actuator, and a second force transmission element coupled to the second articulatable segment and extending in a proximal direction from the second articulatable segment to a second connector portion, the second connector portion being configured to be releasably coupled with a second actuator. The first and second force transmission elements may be configured to transmit actuation forces, respectively, to articulate the first and second articulatable segments independently of one another.
Abstract:
A connector assembly for controllable articles is described herein. The connector assembly engages force transmission elements used to transmit force from one or more force generators with the force transmission elements used to manipulate a controllable article. Additionally, the connector assembly provides organization thereby simplifying the process of connecting a plurality of elements, usually with a quick, single movement.
Abstract:
One RFID equipped instrument includes an elongate body with a plurality of uniquely identified radio frequency identification chips spaced along the length of the elongate body. One system used for determining the position of an instrument includes an instrument; a plurality of radio frequency identification chips attached to the instrument; a reader connected to an antenna and adapted to communicate with each radio frequency identification chip using the antenna.One method for determining the position of an instrument using radio frequency identification chips includes providing a radio frequency identification chip reader and antenna; providing an instrument having a longitudinal axis and comprising a plurality of radio frequency identification chips placed along the longitudinal axis; moving the instrument relative to the antenna; and using information about a radio frequency identification chip detected by the antenna to determine the position of the instrument.