METHOD FOR MAKING REDUCTION SENSITIVE NANO MICELLES

    公开(公告)号:US20220054415A1

    公开(公告)日:2022-02-24

    申请号:US17139566

    申请日:2020-12-31

    摘要: A method for making reduction sensitive nano micelles comprising: 1) dissolving taurine in distilled water, and adding sodium hydroxide solution; 2) dissolving acryloyl chloride in dichloromethane, reacting at 25° C.; dissolving lipoic acid in toluene and adding hydroxyethyl methacrylate, reacting at 85° C.; 3) dissolving N-acryloyltaurine and lipoic acid methacryloyloxyethyl ester and reacting at 60˜65° C., dropping the polymer solution into deionized water, adding dithiothreitol and reacting at 25˜30° C. to obtain reduction sensitive nano micelles after freeze-drying. The nano micelles have regular morphology and uniform distribution, and can be used as drug carriers for controlled release.

    Method for making reduction sensitive nano micelles

    公开(公告)号:US11510874B2

    公开(公告)日:2022-11-29

    申请号:US17139566

    申请日:2020-12-31

    摘要: A method for making reduction sensitive nano micelles comprising: 1) dissolving taurine in distilled water, and adding sodium hydroxide solution; 2) dissolving acryloyl chloride in dichloromethane, reacting at 25° C.; dissolving lipoic acid in toluene and adding hydroxyethyl methacrylate, reacting at 85° C.; 3) dissolving N-acryloyltaurine and lipoic acid methacryloyloxyethyl ester and reacting at 60˜65° C., dropping the polymer solution into deionized water, adding dithiothreitol and reacting at 25˜30° C. to obtain reduction sensitive nano micelles after freeze-drying. The nano micelles have regular morphology and uniform distribution, and can be used as drug carriers for controlled release.

    SERS substrate of metal-modified semiconductor-based bionic compound eye bowl structure and construction method

    公开(公告)号:US20210109025A1

    公开(公告)日:2021-04-15

    申请号:US17082894

    申请日:2020-10-28

    IPC分类号: G01N21/65 C23C30/00

    摘要: The present invention discloses an SERS substrate of a metal-modified semiconductor-based bionic compound eye bowl structure and a construction method, and belongs to the technical field of nano materials. The present invention is based on a multi-time interface self-assembly method. Firstly, a small ball template is constructed by using a gas-liquid interface assembly process. Then, a semiconductor bowl structure array is induced to be formed by the template by using a solid-liquid interface assembly process. Next, a semiconductor bowl is assembled to a surface of a pyramid-shaped cone to form a bionic compound eye structure by using a transfer process. Finally, a surface of the bionic compound eye structure is modified with a layer of uniformly distributed metal particles by a physical deposition method or a chemical deposition method, thereby forming the SERS substrate of the metal-modified semiconductor-based bionic compound eye bowl structure.

    Method of preparing pH/reduction responsive polyamino acid zwitterionic nanoparticles

    公开(公告)号:US10933028B2

    公开(公告)日:2021-03-02

    申请号:US16494993

    申请日:2018-12-03

    摘要: The invention discloses a preparation method of pH/reduction responsive polyamino acid zwitterionic nanoparticles, which belongs to the technical field of polymer synthesis and biomedical materials. In the invention aliphatic amines are used to initiate ring-opening polymerization of γ-benzyl-L-glutamate-N-carboxylic anhydride, and the obtained poly(γ-benzyl-L-glutamate) reacts with L-lysine to form azwitterionic polymer. The zwitterionic polymer is crosslinked by cysteamine, producing pH/reduction responsive polyamino acid zwitterionic nanoparticles after purification. The nanoparticles are pH responsive and resistant to non-specific protein adsorption. Because cysteamine contains disulfide bonds, the nanoparticles have sensitive reductive responsiveness and can load anticancer drugs for controlled release at the target site of cancer.

    Preparation Method for Charge Reversaland Reversibly Crosslinked Redox-Sensitive Nanomicelles

    公开(公告)号:US20190091147A1

    公开(公告)日:2019-03-28

    申请号:US15751577

    申请日:2017-04-27

    摘要: Disclosed is a preparation method for charge reversal and reversibly crosslinked redox-sensitive nanomicelles, falling within the technical field of biomedical materials. The method comprises: synthesizing thiocinamide from lipoic acid and ethylenediamine under an N,N′-carbonyl diimidazole catalyst; and polymerizing thiocinamide, polyethylene glycol diglycidyl ether and lysine through a nucleophilic addition mechanism to prepare a poly(lysine-co-polyethylene glycol diglycidyl ether-co-thiocinamide) terpolymer. The micelle is endowed with excellent anti-protein nonspecific adsorption and enhanced cell uptake property through a self-assembly and protonation/deprotonation action; and a disulfide bond in lipoyl may form a linear polydisulfide structure under the action of 1,4-dithiothreitol, so that a micelle core is crosslinked, and a crosslinked structure is destroyed in the cell under a redox condition, and controlled release of a drug can be achieved. The Nanomicelle of the present invention is expected to be a carrier of drugs for treating cancers.