Abstract:
According to an aspect, a display device includes an image display panel on which pixels each including sub-pixels for displaying a first color, a second color, a third color, and a fourth color are arranged, and a signal processing unit that converts an input value of an input signal for an input HSV color space into an output signal for an extended HSV color space. The signal processing unit divides the extended HSV color space into a plurality of spaces, sets limit proportion values different from each other with respect to at least two spaces of the divided spaces respectively, calculates an extension coefficient α with respect to the input signal by using the input signal and a limit proportion value set with respect to a space according to the input signal, and calculates the output signal based on at least the input signal and the extension coefficient α.
Abstract:
According to an aspect, a display device includes a first sub-pixel, a second sub-pixel, a third sub-pixel; and a fourth sub-pixel. A signal obtained based on at least an input signal for the first sub-pixel and an extension coefficient is supplied to the first sub-pixel. A signal obtained based on at least an input signal for the second sub-pixel and the extension coefficient is supplied to the second sub-pixel. A signal obtained based on at least an input signal for the third sub-pixel and the extension coefficient is supplied to the third sub-pixel. A signal obtained based on at least the input signal for the first sub-pixel, the input signal for the second sub-pixel, the input signal for the third sub-pixel, and the extension coefficient is supplied to the fourth sub-pixel. The extension coefficient varies based on at least a saturation of the input signals.
Abstract:
Each of frame display periods is for performing a display operation based on image information on one frame and each of detection surface touch detection periods is from when touch detection is started to when the detection is completed on the entire detection surface. At least one frame display period of the frame display periods and at least one detection surface touch detection period of the detection surface touch detection periods are started based on a display synchronization signal. The display operation and the touch detection operation are performed in a time-division manner in the one frame display period. The length of the one detection surface touch detection period is longer than the one length of the frame display period.
Abstract:
According to an aspect, a display device includes: an image display panel; a color conversion device including a signal processing unit and a signal output unit; a planar light-source device; and a light-source-device control unit. The signal processing unit includes a color conversion circuit that converts an input signal in a reference color area into a converted input signal generated in a definition color area where a chromaticity point of at least one of a first color, a second color, and a third color is inside of a reference color area, and a four-color generation circuit that generates an output signal and a light-source-device control signal from the converted input signal. The signal output unit outputs the drive signal to each sub-pixel based on the output signal. The light-source-device control unit outputs a drive voltage for emitting white light on the planar light-source device based on the light-source-device control signal.
Abstract:
According to an aspect, a display apparatus includes: a signal line or a scanning line coupled to a plurality of pixels arranged in a display region; a driver that supplies a drive signal via a resistor to the signal line or the scanning line; and an anomaly detector that monitors a response characteristic of a node between the resistor and the signal line or a node between the resistor and the scanning line.
Abstract:
A display device includes an image display panel and a control device. The image display panel includes first sub-pixels, second sub-pixels, third sub-pixels, and fourth sub-pixels in which a specified sub-pixel column including the third sub-pixels and the fourth sub-pixels and at least one other sub-pixel column arranged next to the specified sub-pixel column are periodically arranged. The control device performs column inversion driving to apply a voltage having the same polarity to signal lines of a first specified sub-pixel column belonging to the specified sub-pixel columns and the other sub-pixel column adjacent to the first specified sub-pixel column, apply a voltage having the same polarity as the first specified sub-pixel column to one of the signal lines of a second specified sub-pixel column and a third specified sub-pixel column adjacent to the first specified sub-pixel column, and invert the polarities of the voltages to be applied at predetermined cycles.
Abstract:
According to an aspect, a display device includes a first sub-pixel, a second sub-pixel, a third sub-pixel; and a fourth sub-pixel. A signal obtained based on at least an input signal for the first sub-pixel and an extension coefficient is supplied to the first sub-pixel. A signal obtained based on at least an input signal for the second sub-pixel and the extension coefficient is supplied to the second sub-pixel. A signal obtained based on at least an input signal for the third sub-pixel and the extension coefficient is supplied to the third sub-pixel. A signal obtained based on at least the input signal for the first sub-pixel, the input signal for the second sub-pixel, the input signal for the third sub-pixel, and the extension coefficient is supplied to the fourth sub-pixel. The extension coefficient varies based on at least a saturation of the input signals.
Abstract:
According to an aspect, a display apparatus includes: a signal line or a scanning line coupled to a plurality of pixels arranged in a display region; a driver that supplies a drive signal via a resistor to the signal line or the scanning line; and an anomaly detector that monitors a response characteristic of a node between the resistor and the signal line or a node between the resistor and the scanning line.
Abstract:
A display device includes an image processing unit that performs image processing on image data input from the outside, and performs display output corresponding to the image data on which image processing is performed by the image processing unit. The image processing unit includes a first processing circuit that simply replaces colors of an image to limit the number of colors used for the image to a predetermined number equal to or smaller than 16, a second processing circuit that performs image processing including arithmetic processing for improving luminance of a plurality of pixels constituting the image displayed on the display device corresponding to the image data; and a switching unit that causes the second processing circuit to perform image processing, and causes the first processing circuit to perform image processing when performing the image processing while saving more power than the second processing circuit.
Abstract:
According to an aspect, a display device includes: an image display panel; a color conversion device including a signal processing unit and a signal output unit; a planar light-source device; and a light-source-device control unit. The signal processing unit includes a color conversion circuit that converts an input signal in a reference color area into a converted input signal generated in a definition color area where a chromaticity point of at least one of a first color, a second color, and a third color is inside of a reference color area, and a four-color generation circuit that generates an output signal and a light-source-device control signal from the converted input signal. The signal output unit outputs the drive signal to each sub-pixel based on the output signal. The light-source-device control unit outputs a drive voltage for emitting white light on the planar light-source device based on the light-source-device control signal.