Abstract:
According to one embodiment, an optical control device includes a first liquid crystal cell and a second liquid crystal cell. The second liquid crystal cell is stacked on the first liquid crystal cell. The first liquid crystal cell has a function of modulating and converting a first polarization component of incident light into a second polarization component, and hardly modulating and converting a third polarization component of incident light into a fourth polarization component. The second liquid crystal cell has a function of hardly modulating the second polarization component transmitted through the first liquid crystal cell, and modulating the fourth polarization component transmitted through the first liquid crystal cell.
Abstract:
According to an aspect, a display device includes: a first translucent substrate; a second translucent substrate facing the first translucent substrate; a liquid crystal layer including polymer dispersed liquid crystal sealed between the first translucent substrate and the second translucent substrate; at least one light emitter facing at least one of a side surface of the first translucent substrate or a side surface of the second translucent substrate; and a display controller that controls transmittance of light passing through the first translucent substrate and the second translucent substrate. A non-light-emitting period in which the at least one light emitter does not emit light is provided between a plurality of light-emitting periods in which the at least one light emitter emits light.
Abstract:
According to one embodiment, a display device including a plurality of light sources of different luminous colors, a first substrate, a second substrate opposed to the first substrate, a liquid crystal layer interposed between the first and second substrates, to which light from the light sources enters, a display area on which an image is displayed, and a drive circuit configured to control quantity of light from each of the light sources on the basis of an analyzation result of an image signal used to display the image.
Abstract:
A display device includes a signal processing unit that receives input signals, and calculates output signals to a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel. The signal processing unit calculates a frequency of pixels belonging to each of a plurality of partitions using a light quantity of a surface light source. The signal processing unit calculates an index value for each of the partitions by at least multiplying the cumulative frequency being obtained by sequentially adding the frequency of pixels from a partition having the maximum light quantity among the partitions, and the number of partitions representing a position of a partition to which the cumulative frequency belongs counted from the partition having the maximum light quantity. The signal processing unit controls luminance of the surface light source based on a partition in which the index value exceeds a threshold.
Abstract:
A display device includes: an image display unit that includes a plurality of main pixels in an image display region, the image display unit including sub-pixels; a light source that irradiates the image display region; a light source control unit that controls luminance of the light source; and a color information correction processing unit that corrects first color information that is obtained based on the luminance of the light source and an input video signal to second color information, when color information of at least one of a red pixel, a green pixel, and a blue pixel included in the first color information exceeds a predetermined threshold, the second information is corrected by degenerating color information of the red pixel, the green pixel, and the blue pixel, and by adding color information of the white pixel included in the first color information based on the degenerated color information.
Abstract:
A display device includes a signal processing unit that receives input signals, and calculates output signals to a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel. The signal processing unit calculates a frequency of pixels belonging to each of a plurality of partitions using a light quantity of a surface light source. The signal processing unit calculates an index value for each of the partitions by at least multiplying the cumulative frequency being obtained by sequentially adding the frequency of pixels from a partition having the maximum light quantity among the partitions, and the number of partitions representing a position of a partition to which the cumulative frequency belongs counted from the partition having the maximum light quantity. The signal processing unit controls luminance of the surface light source based on a partition in which the index value exceeds a threshold.
Abstract:
Provided are a display apparatus and an illumination apparatus including: a light source; a time division control unit that performs a time division operation on a value represented by a first luminance control signal of a first bit number for controlling luminance of the light source to generate second luminance control signals each having a second bit number that is smaller than the first bit number and generates third luminance control signals each having a pulse width that corresponds to one of the values represented by the second luminance control signals; and a drive unit that generates drive signals for causing the light source to emit light on the basis of the third luminance control signals and supplies the drive signals to the light source.
Abstract:
According to an aspect, a display device includes: an image display panel; a color conversion device including a signal processing unit and a signal output unit; a planar light-source device; and a light-source-device control unit. The signal processing unit includes a color conversion circuit that converts an input signal in a reference color area into a converted input signal generated in a definition color area where a chromaticity point of at least one of a first color, a second color, and a third color is inside of a reference color area, and a four-color generation circuit that generates an output signal and a light-source-device control signal from the converted input signal. The signal output unit outputs the drive signal to each sub-pixel based on the output signal. The light-source-device control unit outputs a drive voltage for emitting white light on the planar light-source device based on the light-source-device control signal.
Abstract:
A lighting device includes a light emitting module and an optical element including first and second liquid crystal cells. Each of the first and second liquid crystal cells includes first and second transparent electrodes extending in a first direction and third and fourth transparent electrodes extending in a second direction. The light emitting module includes a light source, a light guide plate including an end surface into which light emitted from the light source is incident and a first surface from which the light incident into the end surface is emitted, and a prism sheet disposed opposite to the first surface. The second substrate of the first liquid crystal cell and the first substrate of the second liquid crystal cell are adjacent to each other. The first surface includes a plurality of first grooves extending in a third direction intersecting the first direction and the second direction.
Abstract:
An optical element includes a first liquid crystal cell and a second liquid crystal cell. The first liquid crystal cell and the second liquid crystal cell are stacked. Each of the first liquid crystal cell and the second liquid crystal cell includes a first substrate on which a first transparent electrode and a second transparent electrode are alternately and repeatedly arranged in a first direction, a second substrate on which a third transparent electrode and a fourth transparent electrode are alternately and repeatedly arranged in a second direction intersecting the first direction, and a liquid crystal layer between the first substrate and the second substrate. The second substrate of the first liquid crystal cell and the first substrate of the second liquid crystal cell are adjacent to each other.