Abstract:
According to an aspect, a display device includes an image display panel on which pixels each including sub-pixels for displaying a first color, a second color, a third color, and a fourth color are arranged, and a signal processing unit that converts an input value of an input signal for an input HSV color space into an output signal for an extended HSV color space. The signal processing unit divides the extended HSV color space into a plurality of spaces, sets limit proportion values different from each other with respect to at least two spaces of the divided spaces respectively, calculates an extension coefficient α with respect to the input signal by using the input signal and a limit proportion value set with respect to a space according to the input signal, and calculates the output signal based on at least the input signal and the extension coefficient α.
Abstract:
According to an aspect, a display device includes a first sub-pixel, a second sub-pixel, a third sub-pixel; and a fourth sub-pixel. A signal obtained based on at least an input signal for the first sub-pixel and an extension coefficient is supplied to the first sub-pixel. A signal obtained based on at least an input signal for the second sub-pixel and the extension coefficient is supplied to the second sub-pixel. A signal obtained based on at least an input signal for the third sub-pixel and the extension coefficient is supplied to the third sub-pixel. A signal obtained based on at least the input signal for the first sub-pixel, the input signal for the second sub-pixel, the input signal for the third sub-pixel, and the extension coefficient is supplied to the fourth sub-pixel. The extension coefficient varies based on at least a saturation of the input signals.
Abstract:
According to an aspect, a display device includes: an image display panel; and a plurality of signal processing circuits that are responsible for respective regions in the image display panel, that convert an input value of an input HSV color space of an input signal to each of their own responsible regions into an extension value of an extended HSV color space to generate an output signal of the extension value for the image display panel. The signal processing circuits decide an extension coefficient αA for the image display panel in its entirety in a cooperative manner. The signal processing circuit, regarding its own responsible region, calculates an output signal of each of a first sub-pixel, a second sub-pixel, third sub-pixel, and a fourth sub-pixel.
Abstract:
According to an aspect, a display device includes a first sub-pixel, a second sub-pixel, a third sub-pixel; and a fourth sub-pixel. A signal obtained based on at least an input signal for the first sub-pixel and an extension coefficient is supplied to the first sub-pixel. A signal obtained based on at least an input signal for the second sub-pixel and the extension coefficient is supplied to the second sub-pixel. A signal obtained based on at least an input signal for the third sub-pixel and the extension coefficient is supplied to the third sub-pixel. A signal obtained based on at least the input signal for the first sub-pixel, the input signal for the second sub-pixel, the input signal for the third sub-pixel, and the extension coefficient is supplied to the fourth sub-pixel. The extension coefficient varies based on at least a saturation of the input signals.
Abstract:
According to an aspect, a display device includes: an image display panel; a color conversion device including a signal processing unit and a signal output unit; a planar light-source device; and a light-source-device control unit. The signal processing unit includes a color conversion circuit that converts an input signal in a reference color area into a converted input signal generated in a definition color area where a chromaticity point of at least one of a first color, a second color, and a third color is inside of a reference color area, and a four-color generation circuit that generates an output signal and a light-source-device control signal from the converted input signal. The signal output unit outputs the drive signal to each sub-pixel based on the output signal. The light-source-device control unit outputs a drive voltage for emitting white light on the planar light-source device based on the light-source-device control signal.
Abstract:
According to an aspect, a display device includes: an image display panel; a signal processing unit; and a signal processing circuit. The signal processing unit calculates an extension coefficient α for an input signal, calculates an output signal of a first sub-pixel, calculates an output signal of a second sub-pixel, calculates an output signal of a third sub-pixel, calculates an output signal of a fourth sub-pixel, and calculates a control signal. The signal processing circuit performs filtering processing on the control signal by a set first time constant to calculate and output a light-source device control signal, when the control signal is smaller than a set threshold value, and performs filtering processing on the control signal by a set second time constant to calculate and output the light-source device control signal, when the control signal is equal to or larger than the threshold value.
Abstract:
According to an aspect, a display device includes: an image display panel; a signal processing unit; and a signal processing circuit. The signal processing unit calculates an extension coefficient α for an input signal, calculates an output signal of a first sub-pixel, calculates an output signal of a second sub-pixel, calculates an output signal of a third sub-pixel, calculates an output signal of a fourth sub-pixel, and calculates a control signal. The signal processing circuit performs filtering processing on the control signal by a set first time constant to calculate and output a light-source device control signal, when the control signal is smaller than a set threshold value, and performs filtering processing on the control signal by a set second time constant to calculate and output the light-source device control signal, when the control signal is equal to or larger than the threshold value.
Abstract:
According to an aspect, a display device includes: an image display panel; a color conversion device including a signal processing unit and a signal output unit; a planar light-source device; and a light-source-device control unit. The signal processing unit includes a color conversion circuit that converts an input signal in a reference color area into a converted input signal generated in a definition color area where a chromaticity point of at least one of a first color, a second color, and a third color is inside of a reference color area, and a four-color generation circuit that generates an output signal and a light-source-device control signal from the converted input signal. The signal output unit outputs the drive signal to each sub-pixel based on the output signal. The light-source-device control unit outputs a drive voltage for emitting white light on the planar light-source device based on the light-source-device control signal.
Abstract:
According to an aspect, a display device includes: an image display panel; and a plurality of signal processing circuits that are responsible for respective regions in the image display panel, that convert an input value of an input HSV color space of an input signal to each of their own responsible regions into an extension value of an extended HSV color space to generate an output signal of the extension value for the image display panel. The signal processing circuits decide an extension coefficient αA for the image display panel in its entirety in a cooperative manner. The signal processing circuit, regarding its own responsible region, calculates an output signal of each of a first sub-pixel, a second sub-pixel, third sub-pixel, and a fourth sub-pixel.