Abstract:
The present invention relates to a recombinant yeast cell for high yield protein expression. The invention further relates to cell culture involving the recombinant yeast cell, a method for preparing protein involving culturing the recombinant yeast cell and a use of the recombinant yeast cell.
Abstract:
The present invention is based on the discovery that increased growth and yield in plants can be achieved by elevating the level of receptor-like protein kinase (RKN), a member of the receptor-like protein kinase (RLK) family. RKN polypeptide and polynucleotides encoding RKN polypeptide are provided, as are RKN expression control sequences. Also included are methods of producing a genetically modified plant characterized as having increased growth and yield as compared to a corresponding wild-type plant. A method for genetically modifying a plant cell such that a plant produced form the cell will have a modulated yield is also provided. A method of producing a genetically modified plant characterized as having increased expression of a gene product of interest in its roots as compared to the corresponding wild type plant is also provided. The invention also provides plants, plant tissue, and seeds produced by the genetically modified plants of the invention.
Abstract:
The present invention relates to a leader peptide which promotes the secretion of recombinant proteins and a nucleic acid sequence encoding the leader peptide as well as expression cassettes, vectors and host cells comprising this leader sequence. Also disclosed is a method for producing a protein using this leader peptide.
Abstract:
Engineered variant polypeptides having amylase enzyme activity, compositions comprising the enzymes, and methods of making and using the enzymes. The genetically engineered amylase enzymes are useful in many different applications such as laundry detergents, dish washing detergents, and cleaning products for homes, industry, vehicle care, baking, animal feed, pulp and paper processing, starch processing, and ethanol production.
Abstract:
A promoter operably linked to a gene encoding a protein is disclosed. The promoter drives expression of the protein in a yeast cell in the absence of methanol. Also disclosed are vectors, host cells and expression systems that include the promoter, as well as methods of using the promoter to express proteins in yeast.
Abstract:
A promoter operably linked to a gene encoding a protein is disclosed. The promoter drives expression of the protein in a yeast cell in the absence of methanol. Also disclosed are vectors, host cells and expression systems that include the promoter, as well as methods of using the promoter to express proteins in yeast.