摘要:
The present invention relates to a design structure for a pixel sensor cell. The pixel sensor cell approximately doubles the available signal for a given quanta of light. A design structure for a pixel sensor cell having reduced complexity includes an n-type collection well region formed beneath a surface of a substrate for collecting electrons generated by electromagnetic radiation impinging on the pixel sensor cell and a p-type collection well region formed beneath the surface of the substrate for collecting holes generated by the impinging photons. A circuit structure having a first input is coupled to the n-type collection well region and a second input is coupled to the p-type collection well region, wherein an output signal of the pixel sensor cell is the magnitude of the difference of a signal of the first input and a signal of the second input.
摘要:
An imaging circuit, an imaging sensor, and a method of imaging. The imaging cell circuit including one or more imaging cell circuits, each imaging cell circuit comprising: a transistor having a floating body for holding charge generated in the floating body in response to exposure of the floating body to electromagnetic radiation; means for biasing the transistor wherein an output of the transistor is responsive to the electromagnetic radiation; and means for selectively connecting the floating body to a reset voltage supply.
摘要:
A pixel array in an image sensor, the image sensor and a digital camera including the image sensor. The image sensor includes a pixel array with colored pixels and unfiltered (color filter-free) pixels. Each unfiltered pixel occupies one or more array locations. The colored pixels may be arranged in uninterrupted rows and columns with unfiltered pixels disposed between the uninterrupted rows and columns. The image sensor may in CMOS with the unfiltered pixels reducing low-light noise and improving low-light sensitivity.
摘要:
The present invention is a pixel sensor cell and method of making the same. The pixel sensor cell approximately doubles the available signal for a given quanta of light. The device of the present invention utilizes the holes produced by impinging photons in a pixel sensor cell circuit. A pixel sensor cell having reduced complexity includes an n-type collection well region formed beneath a surface of a substrate for collecting electrons generated by electromagnetic radiation impinging on the pixel sensor cell and a p-type collection well region formed beneath the surface of the substrate for collecting holes generated by the impinging photons. A circuit structure having a first input is coupled to the n-type collection well region and a second input is coupled to the p-type collection well region, wherein an output signal of the pixel sensor cell is the magnitude of the difference of a signal of the first input and a signal of the second input.
摘要:
An imaging circuit, an imaging sensor, and a method of imaging. The imaging cell circuit including one or more imaging cell circuits, each imaging cell circuit comprising: a transistor having a floating body for holding charge generated in the floating body in response to exposure of the floating body to electromagnetic radiation; means for biasing the transistor wherein an output of the transistor is responsive to the electromagnetic radiation; and means for selectively connecting the floating body to a reset voltage supply.
摘要:
Disclosed is a method of manufacturing dual orientation wafers. A trench is formed in a multi-layer wafer to a silicon substrate with a first crystalline orientation. The trench is filled with a silicon material (e.g., amorphous silicon or polysilicon trench). Isolation structures are formed to isolate the silicon material in the trench from a semiconductor layer with a second crystalline orientation. Additional isolation structures are formed within the silicon material in the trench and within the semiconductor layer. A patterned amorphization process is performed on the silicon material in the trench and followed by a recrystallization anneal such that the silicon material in the trench recrystallizes with the same crystalline orientation as the silicon substrate. The resulting structure is a semiconductor wafer with isolated semiconductor areas on the same plane having different crystalline orientations as well as isolated sections within each semiconductor area for device formation.
摘要:
A novel Active Pixel Sensor (APS) cell structure and method of manufacture. Particularly, an image sensor APS cell having a predoped transfer gate is formed that avoids the variations of Vt as a result of subsequent manufacturing steps. According to the preferred embodiment of the invention, the image sensor APS cell structure includes a doped p-type pinning layer and an n-type doped gate. There is additionally provided a method of forming the image sensor APS cell having a predoped transfer gate and a doped pinning layer. The predoped transfer gate prevents part of the gate from becoming p-type doped.
摘要:
Disclosed is a method of manufacturing dual orientation wafers. A trench is formed in a multi-layer wafer to a silicon substrate with a first crystalline orientation. The trench is filled with a silicon material (e.g., amorphous silicon or polysilicon trench). Isolation structures are formed to isolate the silicon material in the trench from a semiconductor layer with a second crystalline orientation. Additional isolation structures are formed within the silicon material in the trench and within the semiconductor layer. A patterned amorphization process is performed on the silicon material in the trench and followed by a recrystallization anneal such that the silicon material in the trench recrystallizes with the same crystalline orientation as the silicon substrate. The resulting structure is a semiconductor wafer with isolated semiconductor areas on the same plane having different crystalline orientations as well as isolated sections within each semiconductor area for device formation.
摘要:
A novel Active Pixel Sensor (APS) cell structure and method of manufacture. Particularly, an image sensor APS cell having a predoped transfer gate is formed that avoids the variations of Vt as a result of subsequent manufacturing steps. According to the preferred embodiment of the invention, the image sensor APS cell structure includes a doped p-type pinning layer and an n-type doped gate. There is additionally provided a method of forming the image sensor APS cell having a predoped transfer gate and a doped pinning layer. The predoped transfer gate prevents part of the gate from becoming p-type doped.
摘要:
A novel CMOS image sensor Active Pixel Sensor (APS) cell structure and method of manufacture. Particularly, a CMOS image sensor APS cell having a predoped transfer gate is formed that avoids the variations of Vt as a result of subsequent manufacturing steps. According to the preferred embodiment of the invention, the CMOS image sensor APS cell structure includes a doped p-type pinning layer and an n-type doped gate. There is additionally provided a method of forming the CMOS image sensor APS cell having a predoped transfer gate and a doped pinning layer. The predoped transfer gate prevents part of the gate from becoming p-type doped.