Abstract:
One embodiment of the present invention relates to a method for manufacturing solar cells having a nano-micro composite structure on a silicon substrate and solar cells manufactured thereby. The technical problem to be solved is to provide a method for manufacturing solar cells and solar cells manufactured thereby, the method being capable of forming micro wires in various sizes according to the lithographic design of a photoresist and forming nano wires, which have various sizes and aspect ratios, by adjusting the concentration of a wet etching solution and immersion time.
Abstract:
Disclosed are a silicon wafer having a complex structure, a method of fabricating the same, and a solar cell using the same, wherein the silicon wafer is configured such that an oriented silicon wafer has a pyramid pattern formed through wet etching and additionally has nanowires formed in the direction in which silicon crystals are oriented on the pyramid pattern, and is further doped with POCl3.
Abstract:
One embodiment of the present invention relates to a method for manufacturing solar cells having a nano-micro composite structure on a silicon substrate and solar cells manufactured thereby. The technical problem to be solved is to provide a method for manufacturing solar cells and solar cells manufactured thereby, the method being capable of forming micro wires in various sizes according to the lithographic design of a photoresist and forming nano wires, which have various sizes and aspect ratios, by adjusting the concentration of a wet etching solution and immersion time. To this end, the present invention provides a method for manufacturing solar cells and solar cells manufactured thereby, the method comprising the steps of: preparing a first conductive semiconductor substrate having a first surface and a second surface; patterning a photoresist on the second surface of the first conductive semiconductor substrate such that the plane form of the photoresist becomes a form in which multiple horizontal lines and multiple vertical lines intersect each other; electrolessly etching the semiconductor substrate so as to form a micro wire having a width of 1-3 μm and a height of 3-5 μm in a region corresponding to the photoresist and to form multiple nano wires having a width of 1-100 nm and a height of 1-3 μm in a region not corresponding to the photoresist; doping the micro wire and nano wires with a second conductive impurity by using POCl3; forming a first electrode on the first surface of the semiconductor substrate; and forming a second electrode on the micro wire, wherein the efficiency of the solar cells is 10-13%, the efficiency being the ratio of output to incident light energy per unit area.
Abstract:
One embodiment of the present invention relates to a method for manufacturing solar cells having a nano-micro composite structure on a silicon substrate and solar cells manufactured thereby. The technical problem to be solved is to provide a method for manufacturing solar cells and solar cells manufactured thereby, the method being capable of forming micro wires in various sizes according to the lithographic design of a photoresist and forming nano wires, which have various sizes and aspect ratios, by adjusting the concentration of a wet etching solution and immersion time. To this end, the present invention provides a method for manufacturing solar cells and solar cells manufactured thereby, the method comprising the steps of: preparing a first conductive semiconductor substrate having a first surface and a second surface; patterning a photoresist on the second surface of the first conductive semiconductor substrate such that the plane form of the photoresist becomes a form in which multiple horizontal lines and multiple vertical lines intersect each other; electrolessly etching the semiconductor substrate so as to form a micro wire having a width of 1-3 μm and a height of 3-5 μm in a region corresponding to the photoresist and to form multiple nano wires having a width of 1-100 nm and a height of 1-3 μm in a region not corresponding to the photoresist; doping the micro wire and nano wires with a second conductive impurity by using POCl3; forming a first electrode on the first surface of the semiconductor substrate; and forming a second electrode on the micro wire, wherein the efficiency of the solar cells is 10-13%, the efficiency being the ratio of output to incident light energy per unit area.
Abstract:
One embodiment of the present invention relates to a method for manufacturing solar cells having a nano-micro composite structure on a silicon substrate and solar cells manufactured thereby. The technical problem to be solved is to provide a method for manufacturing solar cells and solar cells manufactured thereby, the method being capable of forming micro wires in various sizes according to the lithographic design of a photoresist and forming nano wires, which have various sizes and aspect ratios, by adjusting the concentration of a wet etching solution and immersion time. To this end, the present invention provides a method for manufacturing solar cells and solar cells manufactured thereby, the method comprising the steps of: preparing a first conductive semiconductor substrate having a first surface and a second surface; patterning a photoresist on the second surface of the first conductive semiconductor substrate such that the plane form of the photoresist becomes a form in which multiple horizontal lines and multiple vertical lines intersect each other; electrolessly etching the semiconductor substrate so as to form a micro wire having a width of 1-3 μm and a height of 3-5 μm in a region corresponding to the photoresist and to form multiple nano wires having a width of 1-100 nm and a height of 1-3 μm in a region not corresponding to the photoresist; doping the micro wire and nano wires with a second conductive impurity by using POCl3; forming a first electrode on the first surface of the semiconductor substrate; and forming a second electrode on the micro wire, wherein the efficiency of the solar cells is 10-13%, the efficiency being the ratio of output to incident light energy per unit area.