Abstract:
Disclosed is an electrode catalyst for a hydrocarbon-fueled solid oxide fuel cell. The electrode catalyst includes ceria supports and iridium-nickel alloy nanoparticles dispersed on the surfaces of the ceria supports. The electrode catalyst can be inhibited from carbon deposition, a general phenomenon in conventional hydrocarbon-fueled solid oxide fuel cells. Therefore, the catalytic activity of the electrode catalyst can be maintained even at high temperature for a long period of time. In addition, the electrode catalyst contains a minimum amount of a platinum group metal for inhibiting the occurrence of carbon deposition and has a maximized surface area. Therefore, the electrode catalyst exhibits improved catalytic activity and can be produced at greatly reduced cost while suppressing the occurrence of carbon deposition.
Abstract:
Provided are a solid oxide cell (SOC) system producing a synthetic gas by using a waste gas discharged from a power plant, or the like, and a method for controlling the same. The SOC system includes i) a first power plant configured to provide a waste gas and first electrical energy, ii) a second power plant configured to provide second electrical energy using an energy source different from that of the first power plant, and iii) a solid oxide cell (SOC) connected to the first power plant and the second power plant, configured to receive the waste gas and the second electrical energy to manufacture carbon monoxide and hydrogen, and providing the carbon monoxide and the hydrogen to the first power plant.
Abstract:
A hybrid electrochemical cell using reversible operation of a solid oxide cell includes: i) solid oxide cell generating power; ii) first storage container storing hydrogen and carbon monoxide discharged from the solid oxide cell supplying the hydrogen and carbon monoxide to the solid oxide cell; iii) second storage container storing steam and carbon dioxide discharged from the solid oxide cell supplying the steam and carbon dioxide to the solid oxide cell; iv) first connection pipe connecting the first storage container, the second storage container, and the solid oxide cell; v) second connection pipe connecting the first storage container, the second storage container, and the solid oxide cell; vi) discharging terminal connected to the solid oxide cell; vii) charging terminal connected to the solid oxide cell spaced apart from the discharging terminal, having the solid oxide cell disposed in between; and viii) mode converter connected to the solid oxide cell.