Abstract:
Provided are a solid oxide fuel cell including: an anode support; a solid electrolyte layer formed on the anode support; and a composite cathode layer formed on the solid electrolyte layer, wherein the composite cathode layer is a porous sintered phase comprising an electrode material and an electrolyte material and a method for preparing same. The solid oxide fuel cell which includes a post-heat-treated nanocomposite cathode, which exhibits high interfacial strength and superior conductivity, exhibits superior power efficiency as well as superior durability.
Abstract:
A hybrid electrochemical cell using reversible operation of a solid oxide cell includes: i) solid oxide cell generating power; ii) first storage container storing hydrogen and carbon monoxide discharged from the solid oxide cell supplying the hydrogen and carbon monoxide to the solid oxide cell; iii) second storage container storing steam and carbon dioxide discharged from the solid oxide cell supplying the steam and carbon dioxide to the solid oxide cell; iv) first connection pipe connecting the first storage container, the second storage container, and the solid oxide cell; v) second connection pipe connecting the first storage container, the second storage container, and the solid oxide cell; vi) discharging terminal connected to the solid oxide cell; vii) charging terminal connected to the solid oxide cell spaced apart from the discharging terminal, having the solid oxide cell disposed in between; and viii) mode converter connected to the solid oxide cell.
Abstract:
Provided are a solid oxide cell (SOC) system producing a synthetic gas by using a waste gas discharged from a power plant, or the like, and a method for controlling the same. The SOC system includes i) a first power plant configured to provide a waste gas and first electrical energy, ii) a second power plant configured to provide second electrical energy using an energy source different from that of the first power plant, and iii) a solid oxide cell (SOC) connected to the first power plant and the second power plant, configured to receive the waste gas and the second electrical energy to manufacture carbon monoxide and hydrogen, and providing the carbon monoxide and the hydrogen to the first power plant.
Abstract:
Disclosed is a metal separator for a solid oxide regenerative fuel cell coated with a conductive spinel oxide film. In the conductive spinel oxide film, yttrium is added to a manganese-cobalt spinel oxide to suppress growth of an insulating oxide film on the surface of the metal separator and volatilization of metal. In the conductive oxide film coated on the metal separator, yttrium is segregated at the grain boundaries of the spinel so that migration of oxygen through the grain boundaries can be suppressed. Therefore, the surface of the metal separator can be protected from exposure to the atmosphere and water vapor when the solid oxide regenerative fuel cell is operated at high temperature. In addition, poisoning of electrodes by metal volatilization from the surface of the metal separator and growth of an insulating oxide film on the surface of the metal separator can be prevented. Therefore, the stability of the solid oxide regenerative fuel cell stack can be markedly improved.