Abstract:
The present invention relates to a device and a method for cleaning and sterilizing a filling valve of a beverage filling system for filling a container with a filling product. The device includes a cap for closing a filling product outlet of the filling valve during the cleaning and sterilization, and a valve for opening and closing the through-opening. The cap has a through-opening for discharging sterilization medium during the sterilization. The valve includes a shape-memory material for switching the valve between an open and closed position at a predetermined temperature.
Abstract:
An apparatus for treating containers includes a housing, inside which a sterile chamber is formed. A treatment element is arranged inside the housing and is rotatable about a predefined axis. The treatment element is arranged on a carrier inside the housing, and has a drive device for driving the treatment element. The drive device is arranged at least partially outside the sterile chamber and includes at least a first drive element arranged outside the sterile chamber for generating rotational movements, and a second drive element arranged inside the sterile chamber. The first drive element and the second drive element cooperate in a contactless manner to generate rotational movement of the treatment element. The drive elements in each case have at least one magnetisable element and preferably at least the second drive element is displaceable in the direction of its axis of rotation relative to the sterile chamber.
Abstract:
A distributor for distributing free-flowing media has a distributor shaft with a distributor head, which is rotatable relative to the distributor shaft with respect to a predetermined axis of rotation D. The distributor head has at least one inlet opening for delivering the free-flowing medium and a plurality of outlet openings for discharging the free-flowing medium. A flow connection exists between this inlet opening and the outlet openings. The distributor shaft has at least one first distributor shaft segment and a second distributor shaft segment. The second distributor shaft is releasably disposed on the first distributor shaft segment closer to the distributor head than the first distributor shaft segment, and has a surface facing the free-flowing medium. The first distributor shaft segment and the second distributor shaft segment differ with regard to their materials and/or their surface coating.
Abstract:
A distributor for distributing free-flowing media has a distributor shaft with a distributor head, which is rotatable relative to the distributor shaft with respect to a predetermined axis of rotation D. The distributor head has at least one inlet opening for delivering the free-flowing medium and a plurality of outlet openings for discharging the free-flowing medium. A flow connection exists between this inlet opening and the outlet openings. The distributor shaft has at least one first distributor shaft segment and a second distributor shaft segment. The second distributor shaft is releasably disposed on the first distributor shaft segment closer to the distributor head than the first distributor shaft segment, and has a surface facing the free-flowing medium. The first distributor shaft segment and the second distributor shaft segment differ with regard to their materials and/or their surface coating.
Abstract:
An apparatus for treating containers includes a housing, inside which a sterile chamber is formed. A treatment element is arranged inside the housing and is rotatable about a predefined axis. The treatment element is arranged on a carrier inside the housing, and has a drive device for driving the treatment element. The drive device is arranged at least partially outside the sterile chamber and includes at least a first drive element arranged outside the sterile chamber for generating rotational movements, and a second drive element arranged inside the sterile chamber. The first drive element and the second drive element cooperate in a contactless manner to generate rotational movement of the treatment element. The drive elements in each case have at least one magnetisable element and preferably at least the second drive element is displaceable in the direction of its axis of rotation relative to the sterile chamber.