摘要:
An electroluminescent element includes a glass substrate, on which are formed a first electrode, a first insulating layer, a first luminescent layer, a second luminescent layer, a second insulating layer, a second electrode, a protective film and a red color filter. In this structure, the first luminescent layer is made of ZnS having Mn added thereto, and the second luminescent layer is made of ZnS having Tb added thereto. Here, the clamp electric field intensity of the second luminescent layer is higher than that of the first luminescent layer, and the product of a dielectric constant and clamp electric field intensity of the first luminescent layer is larger than the product of a dielectric constant and clamp electric field intensity of the second luminescent layer. Consequently, it is possible to increase the luminance of light emitted from the luminescent layer and decrease the luminescence threshold voltage when the luminescent layer is made into a stacked layer structure.
摘要:
A dry etching method performing dry etching of a material containing zinc forms and patterns a resist on the material to be etched, and etches the material using an etching gas which is a mixed gas of methane gas and an inert gas. A dry etching method that dry etches a material containing zinc etches the material using an etching gas that consists only of methane gas, an inert gas, and hydrogen gas alone. Another dry etching method that dry etches a material containing zinc introduces an etching gas that contains methane gas, an inert gas, and hydrogen gas into a dry etching device, in which the flow rate of the hydrogen gas is set such that it is equal to or greater than the value at which the amount of dissociated hydrogen becomes saturated, and etches the material using the etching gas. An EL element manufacturing method forms a first luminescent material containing zinc in its composition on a first insulated layer, forms a first resist that has a first pattern on the first luminescent material, dry etches the first luminescent material through the first resist, thereby forming the first luminescent layer; forms a second luminescent material having zinc in its composition on the first luminescent layer, forms a second resist on the second luminescent material, and dry etches the second luminescent material through the second resist.
摘要:
An electroluminescent display in which a dielectric breakdown of a luminescent element is suppressed has luminescent elements disposed between first and second substrates, where the first and second substrates are deformed into a convex shape to improve breakdown characteristics.
摘要:
An electroluminescent display in which a dielectric breakdown of a luminescent element is suppressed has luminescent elements disposed between first and second substrates, where the first and second substrates are deformed into a convex shape to improve breakdown characteristics.
摘要:
In an electroluminescent element in which a first electrode, a first insulating layer, a luminescent layer, a second insulating layer and a second electrode are sequentially laminated on a substrate, the luminescent layer has a first and second luminescent portions which are located apart from each other. A color filter is provided above one of the first and second luminescent portions. The second electrode includes a first part electrode for activating the first luminescent portion and a second part electrode for activating the second luminescent portion. The color filter is formed so that a portion extending from a bottom face of the color filter is inserted into a gap between the first and second luminescent portions to surround an upper face and side faces of the one of the first and second luminescent portions.
摘要:
In an electroluminescent device comprising an insulating substrate having consecutively thereon a first electrode, a first insulating layer, a luminescent layer composed of two types or more luminescent portions differing in luminescent color which are provided in a flat panel arrangement to give a single-layered luminescent layer, a second insulating layer and a second electrode, a first dielectric film is disposed between the luminescent portions to provide an isolation layer for isolating the luminescent portions, and a second dielectric film for adjusting the luminescence threshold voltage is disposed on the light outcoupling side or on the side opposite thereto of one of said luminescent portions. Herein, the first and second dielectric films provided for isolating the luminescent portions and for adjusting the luminescence threshold voltage, respectively, are made of the same material and have a refractive index lower than that of both luminescent portions.
摘要:
A process for producing an electroluminescence element provided with a luminescent layer sandwiched between two electrodes on an insulating substrate, the luminescent layer being composed of a host material with a luminescent center element added. The process comprises a step of forming the aforesaid luminescent layer as a film onto the insulating substrate by either sputtering or evaporation, by use of a source material composed of a compound of an element of Group II and an element of Group VI, to which a halide of a rare earth element is added as the luminescent center element. The atmosphere at the time of the film formation contains either a halogen gas or halide gas. The aforesaid luminescent layer is formed as a film onto the insulating substrate by either sputtering or evaporation, by use of a source material composed of the aforesaid compound of an element of Group II and an element of Group VI, to which a fluoride or fluorine compound of the luminescent center element and a halide other than fluoride of the element of Group II are added. The film formation atmosphere may be pretreated with a chlorine-containing gas prior to a film formation step of forming the luminescent layer as a film onto the insulating substrate by a sputtering method by use of a source material composed of the host material with the luminescent center element. An electro-luminescence element is further disclosed, wherein the X-ray diffraction spectrum thereof has only a single peak at an X-ray diffraction angle from the luminescent layer, ranging from 25.degree. to 30.degree. according to a thin film X-ray diffraction measuring method using Cu-Kd radiation, and no other peaks of the X-ray diffraction spectrum exist at an X-ray diffraction angle of approximately 27.degree..
摘要:
An electroluminescence element provided with a luminescent layer sandwiched between two electrodes on an insulating substrate. The luminescent layer is composed of zinc sulfide with a fluoride or a luminescent center element added, wherein the X-ray diffraction spectrum thereof has only a single peak at an X-ray diffraction angle from the luminescent layer, ranging from 25.degree. to 30.degree. according to a thin film X-ray diffraction measurement method using Cu-Kd radiation, and no other peaks of the X-ray diffraction spectrum exist at an X-ray diffraction angle of 27.degree..
摘要:
An electroluminescent display panel which is able to selectively display different colors by changing a voltage level imposed thereon is made in a simple structure. A first luminescent layer (4) emitting green light, for example, and a second luminescent layer (5) emitting orange light, for example, are directly laminated on each other without interposing an intermediate electrode therebetween. The second luminescent layer covers only a part of the first luminescent layer to form a single layer portion and a double layer portion. The single layer portion emits green light at a low voltage level, while the double layer portion emits lemon light having a higher luminance at a high voltage level. The display may be made in a form of a matrix or a certain pattern. The display panel may be used as an instrument panel for an automobile. The green light display is used at night time, while the lemon light display with a high luminance is used at day time to cope with sun light.
摘要:
In order to realize a method and an apparatus, each of which requires no contact treatment and no chemical reaction, for separating isomers of a chiral substance by irradiating a chiral substance with light such as circularly polarized light, so as to separate isomers in accordance with a difference in acceleration between the isomers, separation of isomers of a chiral substance in accordance with at least one embodiment of the present invention includes: (i) a circularly polarized light irradiating apparatus for irradiating, with circularly polarized light, a chiral substance which is a mixture of different isomers and is released from a molecular beam generating apparatus in a vacuum chamber; and (ii) isomer inlets for separating the different isomers of the chiral substance in accordance with a difference in acceleration between the different isomers.