摘要:
A memory circuit for use in a data processing circuit is described, in which memory cells have at least two states, each state being determined by both a first voltage level corresponding to a first supply line and a second voltage level corresponding to a second supply line. The memory circuit comprises a readable state in which information stored in a memory cell is readable and an unreadable state in which information stored in said memory cell is reliably retained but unreadable. Changing the first voltage level but keeping the second voltage level substantially constant effects a transition between the readable state and the unreadable state. In use, the static power consumption of the memory cell in the unreadable state is less than static power consumption of the memory cell in the readable state.
摘要:
A memory circuit for use in a data processing circuit is described, in which memory cells have at least two states, each state being determined by both a first voltage level corresponding to a first supply line and a second voltage level corresponding to a second supply line. The memory circuit comprises a readable state in which information stored in a memory cell is readable and an unreadable state in which information stored in said memory cell is reliably retained but unreadable. Changing the first voltage level but keeping the second voltage level substantially constant effects a transition between the readable state and the unreadable state. In use, the static power consumption of the memory cell in the unreadable state is less than static power consumption of the memory cell in the readable state.
摘要:
A memory circuit for use in a data processing circuit is described, in which memory cells have at least two states, each state being determined by both a first voltage level corresponding to a first supply line and a second voltage level corresponding to a second supply line. The memory circuit comprises a readable state in which information stored in a memory cell is readable and an unreadable state in which information stored in said memory cell is reliably retained but unreadable. Changing the first voltage level but keeping the second voltage level substantially constant effects a transition between the readable state and the unreadable state. In use, the static power consumption of the memory cell in the unreadable state is less than static power consumption of the memory cell in the readable state.
摘要:
A memory circuit for use in a data processing circuit is described, in which memory cells have at least two states, each state being determined by both a first voltage level corresponding to a first supply line and a second voltage level corresponding to a second supply line. The memory circuit comprises a readable state in which information stored in a memory cell is readable and an unreadable state in which information stored in said memory cell is reliably retained but unreadable. Changing the first voltage level but keeping the second voltage level substantially constant effects a transition between the readable state and the unreadable state. In use, the static power consumption of the memory cell in the unreadable state is less than static power consumption of the memory cell in the readable state.
摘要:
A data processing system is provided having a processor and analysing circuitry for identifying a SIMD instruction associated with a first SIMD instruction set and replacing it by a functionally-equivalent scalar representation and marking that functionally-equivalent scalar representation. The marked functionally-equivalent scalar representation is dynamically translated using translation circuitry upon execution of the program to generate one or more corresponding translated instructions corresponding to a instruction set architecture different from the first SIMD architecture corresponding to the identified SIMD instruction.
摘要:
An integrated circuit includes a plurality of processing stages each including processing logic, a non-delayed signal-capture element, a delayed signal-capture element and a comparator. The non-delayed signal-capture element captures an output from the processing logic at a non-delayed capture time. At a later delayed capture time, the delayed signal-capture element also captures a value from the processing logic. An error detection circuit and error correction circuit detect and correct random errors in the delayed value and supplies an error-checked delayed value to the comparator. The comparator compares the error-checked delayed value and the non-delayed value and if they are not equal this indicates that the non-delayed value was captured too soon and should be replaced by the error-checked delayed value. The non-delayed value is passed to the subsequent processing stage immediately following its capture and accordingly error recovery mechanisms are used to suppress the erroneous processing which has occurred by the subsequent processing stages, such as gating the clock and allowing the correct signal values to propagate through the subsequent processing logic before restarting the clock. The operating parameters of the integrated circuit, such as the clock frequency, the operating voltage, the body biased voltage, temperature and the like are adjusted so as to maintain a finite non-zero error rate in a manner that increases overall performance.
摘要:
Performance level selection is carried out by calculating a plurality of performance requests using a plurality of performance request calculating algorithms, combining those different performance requests to form a global performance request and then selecting a performance level in dependence upon the global performance level request. The performance request calculating algorithms can be arranged in a hierarchy with their performance requests evaluated in a sequence starting from the least dominant position in the hierarchy and moving through to the most dominant position in the hierarchy. Commands may accompany each performance level request to specify how it should be combined with other performance level requests.
摘要:
A method of selecting where error detection circuits should be placed within an integrated circuit uses simulation of a reference and test design with errors injected into the test design and then fan out analysis performed upon those injected errors to identify error propagation characteristics. Thus, registers at which propagated errors are highly likely to manifest themselves or which protect key architectural state, or which protect state not otherwise protected can be identified and so an efficient deployment of error detection mechanisms achieved. Within an integrated circuit output signals from inactive circuit elements may be subject to isolation gating in dependence upon a detected current state of the integrated circuit. Thus, inactive circuit elements in which soft errors occur have inappropriate output signals gated from reaching the rest of the integrated circuit and thus reducing erroneous operation.
摘要:
Power management control software including power management policies is provided with those policies divided into observation code 18, 20, 22 and response code 26, 28, 30. When predetermined execution points 10, 12 within the operating system 2 are reached registered observation code 18, 20 for those execution points 10, 12 is triggered to be executed and serves to store event data within an event data store 24. At another time independent of the execution points 10, 12, the response code 26, 28, 30 is executed to read the event data from the event data store 24 and generate power control predictions and control signals therefrom.
摘要:
An integrated circuit includes a plurality of processing stages each including processing logic 1014, a non-delayed signal-capture element 1016, a delayed signal-capture element 1018 and a comparator 1024. The non-delayed signal-capture element 1016 captures an output from the processing logic 1014 at a non-delayed capture time. At a later delayed capture time, the delayed signal-capture element 1018 also captures a value from the processing logic 1014. An error detection circuit 1026 and error correction circuit 1028 detect and correct random errors in the delayed value and supplies an error-checked delayed value to the comparator 1024. The comparator 1024 compares the error-checked delayed value and the non-delayed value and if they are not equal this indicates that the non-delayed value was captured too soon and should be replaced by the error-checked delayed value. The non-delayed value is passed to the subsequent processing stage immediately following its capture and accordingly error recovery mechanisms are used to suppress the erroneous processing which has occurred by the subsequent processing stages, such as gating the clock and allowing the correct signal values to propagate through the subsequent processing logic before restarting the clock. The operating parameters of the integrated circuit, such as the clock frequency, the operating voltage, the body biased voltage, temperature and the like are adjusted so as to maintain a finite non-zero error rate in a manner that increases overall performance.