摘要:
An optical transceiver is disclosed, where the optical transceiver includes an optical subassembly (OSA) with a bottom plate for dissipating heat and connected to an electronic circuit with a flexible printed circuit (FPC). The FPC is soldered with the side electrodes of the OSA as forming a solder fillet in the plane electrode, or the FPC is soldered with the plane electrodes of the OSA as forming the solder fillet in the side electrodes, and leaving a limited room for receiving the curved FPC in peripheries of the OSA.
摘要:
An optical transceiver is disclosed, where the optical transceiver includes an optical subassembly (OSA) with a bottom plate for dissipating heat and connected to an electronic circuit with a flexible printed circuit (FPC). The FPC is soldered with the side electrodes of the OSA as forming a solder fillet in the plane electrode, or the FPC is soldered with the plane electrodes of the OSA as forming the solder fillet in the side electrodes, and leaving a limited room for receiving the curved FPC in peripheries of the OSA.
摘要:
The present invention provides an optical module in which the level of the lead frame coincides with the optical axis of the fiber. The module 1 comprises a container 4, a subassembly 2, a base member 5 and a lead frame 6. The subassembly 2 includes a substrate, on which the semiconductor optical device and the optical fiber are mounted. The container 4 has a pair of surface. One surface is securing the lead frame thereon while the base member is attached to the other surface of the container 4. The base member comprises an island portion and a frame portion. The subassembly 2 is placed on the island and the frame portion is fixed to the container 4. Island support portions connecting the island portion to the frame portion is deformed in the molding process, thus aligning the subassembly 2.
摘要:
The present invention provides an optical module in which the level of the lead frame coincides with the optical axis of the fiber. The module 1 comprises a container 4, a subassembly 2 and a lead frame 6. The subassembly includes a substrate, on which the semiconductor optical device and the optical fiber are mounted. The lead frame has a pair of fixing bar and inner leads. The fixing bars extend along a first direction and attach to regions on the container. Respective inner leads extend along a second direction intersecting the first direction and have tips facing to respective fixing bars.
摘要:
An optical module is disclosed where an optical coupling efficiency between an optical device and an external fiber may be improved. The optical module includes an optical receptacle and a device unit assembled with the optical receptacle only via a stub as forming a gap to isolate these two components. The gap is filled with insulating resin or tightly covered by an insulating ring to reinforce the stub to be hard for an increased moment by the optical assemblies in the device unit.
摘要:
An optical module with an arrangement is disclosed in which the module has the LD, the TEC, and the lens with the lens carrier also mounted on the TEC. The signal light from the LD is concentrated by the lens and reflected by the mirror each assembled with the lens carrier mounted on the TEC. The TEC is mounted on the bottom metal that covers the bottom of the ceramic package, the first layer of which is widely cut to set the TEC therein. The FPC is coupled in at least two edges of the first ceramic layer left from the cut.
摘要:
An optical module is disclosed where an optical coupling efficiency between an optical device and an external fiber may be improved. The optical module includes an optical receptacle and a device unit assembled with the optical receptacle only via a stub as forming a gap to isolate these two components. The gap is filled with insulating resin or tightly covered by an insulating ring to reinforce the stub to be hard for an increased moment by the optical assemblies in the device unit.
摘要:
A light receiving device includes a microlens 21 located in each of regions corresponding to pixels, the microlens being disposed on a rear surface of an InP substrate 1. The microlens is formed by using a resin material having a range of a transmittance of light in the wavelength region between 0.7 and 3 μm of 25% or less, the transmittance being 70% or more.
摘要:
The invention relates to a back-illuminated type light-receiving device. The light-receiving device can be used for a wide frequency range. The device has a structure in which a p-type semiconductor layer and an n-type semiconductor layer are successively stacked on the front side of the semiconductor substrate. A light-receiving portion is provided on the back side of the substrate. A dopant diffusion suppressing layer may be provided between the substrate and the p-type layer.
摘要:
WDMs have been used to separate a plurality of signals spatially by the difference of wavelengths in prior bidirectional multiwavelength optical communication network. For excluding WDMs, linear PD/LD modules adopt eigen-wavelength photodiodes sensing only the light of an eigen wavelength but allowing all the wavelengths longer than the eigen wavelength. An n-member PD/LD module aligns (n-1) eigen wavelength photodiodes, PD1, PD2, PD3, . . . , PDn-1 of .lambda.1, .lambda.2, .lambda.3, . . . ,.lambda.n-1 and an LD of .lambda. n which satisfy inequalities .lambda.1